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Our era has witnessed tremendous advances in plant

genomics, characterized by an explosion of high-throughput

techniques to identify multi-dimensional genome-wide

molecular phenotypes at low costs. More importantly,

genomics is not merely acquiring molecular phenotypes, but

also leveraging powerful data mining tools to predict and

explain them. In recent years, deep learning has been found

extremely effective in these tasks. This review highlights two

prominent questions at the intersection of genomics and deep

learning: 1) how can the flow of information from genomic DNA

sequences to molecular phenotypes be modeled; 2) how can

we identify functional variants in natural populations using deep

learning models? Additionally, we discuss the possibility of

unleashing the power of deep learning in synthetic biology to

create novel genomic elements with desirable functions. Taken

together, we propose a central role of deep learning in future

plant genomics research and crop genetic improvement.
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Introduction
Plants, like all other life forms on earth, can be viewed as a

flow of information. This information flow starts from the

genomic DNA sequence, and ends at terminal observed
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phenotypes or for crop species, agronomic traits. In

between is a relay of information by transcription and

translation, processes summarized as ‘the central dogma

in molecular biology’ by Francis Crick in 1957 [1]. Each

step in the central dogma can be viewed as not only

transmission, but also transformation of genetic informa-

tion from an earlier step. The molecular features involved

are collectively referred to as ‘molecular phenotypes’, to

set them apart from terminal traits. More importantly, in

the genomics era, multifaceted molecular phenotypes

involved in the information relay, including the structure,

modification, function, and evolution of elements in

DNA, RNA, and protein, along with their interactions,

are beginning to be revealed at scale and at reduced cost

[2], facilitating fine-grained dissection of information

transfer and transformation along the central dogma.

Understanding this flow of information is key for both

basic research and crop improvement, but the question of

how to do this remains. In plant forward genetics, we

usually exploit genetic variation at the DNA level (cre-

ated by either artificial mutagenesis or natural variation)

in linkage or association analysis, to identify genomic

variation associated with or, ideally, causal to a specific

phenotypic variation [3]. However, these approaches are

not without their shortcomings: the rich information in

the molecular phenotypes is largely unexplored, making

an end-to-end mechanistic understanding from DNA

sequences to terminal phenotypes difficult.

Notably, this gap is now being closed by advances in two

areas of research. One is association analysis linking

molecular phenotypes and terminal phenotypes, such

as the transcriptome-wide association study (TWAS),

which benefits from a shorter path of information relay,

and involves fewer steps of information transformation

when compared with the genome-wide association study

(GWAS) [4]. The other advance is the prediction of

molecular phenotypes from their upstream molecular

phenotypes, or directly from genomic DNA sequences,

by deep learning models [5]. In this review, we introduce

recent progress in molecular phenotype modeling by

using deep learning approaches, and propose their appli-

cation to identify or prioritize functional variants poten-

tially valuable for crop genetic improvement. The possi-

bility of using deep learning models in synthetic biology

to create novel beneficial alleles is also discussed. We

propose that the deep learning framework discussed

above, combined with high-throughput genome editing,

will prove helpful for the upcoming ‘Breeding 4.2’ era, in
www.sciencedirect.com
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which beneficial variants are rationally combined and

created with unprecedented efficiency [6�].

Deep learning: concepts, tools, and caveats
Machine learning is the science of programming compu-

ters so they can learn from data [7]. Problems in this field

can be divided into two main types: supervised and

unsupervised. The aim of supervised learning is to obtain

a model which maps its predictors (such as DNA

sequences) to target variables (such as histone marks)

(Figure 1a). Target variables can be either categorical

(classification) or continuous (regression) (Figure 1c).

Some examples of supervised learning applications are:

Predicting regulatory and non-regulatory regions in the

maize genome [8], predicting mRNA expression levels

[9��], sequence tagging in rice [10], plant stress pheno-

typing [11], polyadenylation site prediction in Arabidopsis
thaliana [12] and predicting macronutrient deficiencies in

tomato [13]. If there is no specification about the outcome

in the data set, then the problem becomes unsupervised.

Clustering and feature extraction [14] are in this group.
Figure 1

(a) 

A workflow for deep learning in genomics.

A deep learning workflow with biological sequences and molecular phenoty

comprises four steps. (a) Preprocessing of predictors and target variables: r

categorical representation of molecular phenotypes, and proper splitting of 

with evolutionary relationships among biological sequences taken into cons

architecture and hyper-parameters as well as training models on the trainin

should be monitored continuously during training in order to determine whe

evaluation: evaluation of the performance of trained models on another data

models depend on the nature of the target variable: area under the ROC Cu

squared is a metric used for regression problems. (d) Interpretation of mode

elements in biological sequences.
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Artificial Neural Networks (ANN) are well-known meth-

ods to solve machine learning problems, and have been

studied since the 1940s, inspired by the animal nervous

system. ANNs consist of an input, an output, and several

hidden layers. Deep Neural Network (DNN) is a type of

ANN and a relatively young branch of machine learning.

DNNs distinguish from ANNs by having many more

hidden layers. Clearly, as prediction power increases with

DNN, data requirement increases as well. As in other

conventional learning methods, features in the input

vector of a DNN need to be extracted first and are

assumed to be independent of each other. A subset of

DNNs is Convolutional Neural Networks (CNN). CNNs

have at least a convolutional layer, which provides them

the ability of automatic feature extraction from a contin-

uous signal (e.g. weather data as a time series, plant image

or DNA/RNA sequence). A CNN can be trained with a

DNA/RNA sequence that has N base pairs and the

sequence can be represented as one-hot encoded 4 � N
matrix (Figure 1d) to train the model. CNNs can capture

the local motifs even if they appear in different parts of
(b) (d)

(c)
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pes as predictors and target variables, respectively, typically

etrieving and encoding of biological sequences, numerical or

predictor-target pairs into the training, validation and test sets, usually

ideration [9��]. (b) Model building and training: selection of model

g set. Notably, the performance of the model on the validation set

n to stop model training to avoid both under and overfitting. (c) Model

set, termed the test set. Metrics used to measure the performance of

rve (auROC) is one metric used for classification problems, while R-

ls by saliency or feature attribution methods to identify functional
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the input. Moreover, convolutional layers reduce the

number of weights to learn related to fully connected

layers. There are multiple examples of CNN applications

in plant biology [9��,11–13,15]. Zou et al. provided an

interactive tutorial to build a convolutional neural net-

work to discover DNA-binding motifs [16]. Recurrent

Neural Networks (RNNs) (and Convolutional Recurrent

Neural Networks) are another subset of DNNs. In RNNs,

outputs of some layers are fed back into the inputs of a

previous layer. This operation provides memory capabil-

ity to RNNs. Furthermore, RNNs can handle inputs with

different size and they have advantages when the input is

time series. There are various examples in the literature

that applies RNNs to plant biology [10,17–19].

When machine learning methods are employed to solve

problems in genomics, several important caveats should be

considered. Most of them are general to machine learning,

while others are genomics-specific. When building

machine learning models, observations are usually ran-

domly divided into the training set, used to train the model,

the validation set, used to determine model architecture

and hyper-parameters, and the test set, used to evaluate the

performance of the model (Figure 1a). The model is

expected to generalize well, which means it should perform

similarly on the test set and on the training set. However,

sometimes models perform significantly worse on the test

set than on the training set, a phenomenon called overfitting
(Figure 1b). Several scenarios lead to overfitting namely

model complexity, high dimensionality, and so on.

Dimensionality in the feature space sometimes greatly

surpasses the number of observations. For example, the

number of genomic SNPs assayed almost always exceeds

the number of plant genotypes when predicting a pheno-

type from genomic variants, as large-scale phenotyping

projects are still quite expensive. Moreover, there are also

cases where overfitting is hidden and unnoticeable when

dealing with problems in genomics. For example, when

members of a gene family are split between the training set

and the validation/test set, there is a risk that models would

learn family specific molecular patterns and report overly

optimistic predictive accuracies [9��]. Such hidden over-

fitting may also be observed when observations in the

training set and the test set share common molecular

features [20] or genomic loci [21].

When the main purpose is to not only accurately predict

but also to explain the biological rules, interpretability

[22] of the machine learning model and quantifying

feature importance become essential for plant biologists

(Figure 1d). For instance, while predicting a phenotype

accurately from a plant’s genome, additionally a scientist

would like to know the effect of each nucleotide. While

deep learning provides high accuracy in predictions,

sometimes the deep learning models are hard to interpret,

which is crucial to explore the inference of biological

process. In order to build more interpretable models,
Current Opinion in Plant Biology 2020, 54:34–41 
SHAP (SHapley Additive exPlanations) [23] assigns each

feature an importance value for a particular prediction.

DeepLIFT (Deep Learning Important FeaTures) [24]

decomposes the output prediction of a neural network on

a specific input to define important features. For a similar

purpose, integrated gradients [25] aim to attribute the

prediction of a deep network to its input features. On the

other hand Moreover, the choice of encoded biological

features also plays a key role in interpretability. Finally, it

is also important to consider measurement errors or errors

made during data set submission before running the

model or interpreting the results.

Deep learning along the central dogma of
molecular biology
DNA and gene properties

Deep learning has been applied in several areas of large-

scale data analysis to resolve complex biological problems

in genomics, transcriptomics, proteomics, metabolomics

and systems biology [26]. Several studies revealed that

DNA shape plays an important role in determining tran-

scription factor (TF) DNA-binding specificity [27]. A

large range of data types are available, including chroma-

tin accessibility assays (e.g. MNase-seq, DNase-seq,

FAIRE) and other genomic assays (e.g. microarray,

RNA-seq expression). Similarly, for transcription factor

(TF) binding, there exists ChIP-seq data, gene expres-

sion profiles, DAP-seq (DNA affinity purification

sequencing) and ampDAP-seq, which uses amplified

and thus, demethylated DNA as substrates and histone

modifications to understand the mechanisms underlying

gene expression [28]. To analyze these large-scale data

sets, several deep learning methods were developed to

model TF DNA-binding specificity. In order to predict in
vivo TF binding, several methods have been developed

based on deep learning. For example, DeepBind can

learn several motifs to predict binding sites of DNA

and RNA binding proteins [29]. TFImpute predict

cell-specific TF binding trained [30]. The effects of

functional noncoding variants were evaluated in Deep-

SEA [31], DeFind [32] and DFIM [33]. To differentiate

between DNA and RNA-binding residues DRNApred

was developed [34]. All of these above described methods

are mostly trained and tested on human tissues or cell

lines due to easy availability of data sets. In species such

as maize, which has lots of repetitive elements and wide

intergenic regions, it is challenging to identify the key

genomic regulatory regions. To address these challenges,

approaches such as k-mer grammars based on natural

language processing have been used to annotate regula-

tory regions in maize lines in a cost-effective and precise

manner [8]. Machine learning approaches have played a

significant role in modeling transcription factor binding

sites. Machine learning models have proven powerful in

several aspects of plant biology. They can be trained from

various types of sequencing data either alone or in com-

bined manner, and also further integrate other
www.sciencedirect.com
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information, such as DNase I hypersensitivity data, for

better in vivo transcription binding sites (TFBSs) predic-

tion [30].

When comparing CNNs and k-mer methods, CNNs are

more effective in feature extraction. However, CNNs are

often considered black boxes because interpretation of

their output is challenging and can involve high compu-

tational cost. Also, how much of their performance is

derived from learning fundamental biological rules such

as key motifs, motif relationships, and the general

sequence perspective is quite uncertain. For the purpose

of interpretation of DNA, k-mer approaches are prefera-

ble over CNNs and RNNs. Classification of sequences

using frequencies of k-mers (or k-tuples, k-grams) is fast,

accurate, reference-free, and alignment-free. A k-mer is

gene-based approach to identify sequence signatures.

Typically, k-mer frequency vectors are paired together

with a distance function in order to measure the quanti-

tative similarity between any pair of sequences. These

methods are easily interpretable and based on word

statistics to recover semantic and syntactic cues but,

determining why a sequence is classified a certain way

is not as straight-forward as a more traditional alignment-

based approach. However, using a k-mer representation

seems to be a good balance for accurate and rapid classi-

fication. Notably, there are also examples combining both

k-mer approaches and deep learning models [35],

although the impact of this approach on precision or

interpretability has not been systemically evaluated.

Protein properties

The function of any protein directly depends on its

tertiary structure. The tertiary structure of protein can

be revealed by synthetically analyzing various protein

properties, such as secondary structure, transmembrane

topology, signal peptides, solvent accessibility, backbone

dihedrals, disorder-to-order transition, contact maps,

model qualities, inter-residual contact, protein interaction

sites, protein disorders, and enzyme dynamics. To extract

important amino acid features from de novo peptide

sequence DeepNovo was developed using a CNN

approach [36]. Recently, Google’s AlphaFold has gener-

ated tremendous excitement by using advances in artifi-

cial intelligence to predict a protein’s tertiary structure

[37]. In order to predict secondary structure, relative

solvent accessibility and inter-residue contact maps raw-

MSA was used in deep learning models [38]. However,

deep learning algorithms have achieved successful results

in diverse areas, but their effectiveness for PPI prediction

was quite low due to low coverage and noisy data. In this

context, DPPI, a new model able to predict PPIs and

homodimeric interactions from sequence information

[39]. DEEPre is a sequence-based enzyme EC number

prediction by deep learning to annotate enzyme functions

in metagenomics, industrials biotechnology and diseases

[40].
www.sciencedirect.com 
Model and data sharing by model zoos and data

repositories

Although a large number of deep learning models have

been developed to solve problems in human or animal

genomics, they are often developed in different frame-

works that require a myriad of different dependencies,

making it difficult for researchers to test published mod-

els on new data or adapt existing models in new ensemble

or transfer learning tasks. Following FAIR (Findable,

Accessible, Interoperable, and Reusable) principles

[41], the Kipoi repository has recently been developed

to accelerate community exchange and reuse of predic-

tive models for genomics [42��]. Most models in Kipoi

developed for animal or human genomes can be easily

retrained using plant genomics datasets, or even applied

directly on plants (such as models predicting biochemical

properties of proteins); however, care must be taken when

the biological question being studied involves plant-spe-

cific problems. For example, when modeling relative

gene expression levels in maize and sorghum, the tetra-

ploidy of maize may cause some challenges [9��]. Poly-

ploidy and extensive tandem duplication of genes in plant

species may also lead to biased quantification of gene

expression, resulting in lower-quality training and test

datasets. Moreover, as genome elements (such as introns,

exons, or distances between enhancers and promoters)

often differ significantly in their sizes between animal and

plant species, re-optimization of model architectures and

hyper-parameters may be crucial before models in ani-

mals can be retrained for plant species.

In addition to model zoos, databases such as CyVerse

(http://www.cyverse.org/) are needed to accommodate

omics data on which models are developed. This would

alleviate the lack of high-quality large-scale data sets in

genomics, and also offer the opportunity to build smart

approaches to fuse heterogeneous datasets to further

facilitate transfer learning.

Making sense of genomic variation: from
association to causality and molecular
mechanisms
As discussed above, deep learning models can be used to

predict molecular phenotypes (such as transcription factor

binding, epigenetic marks, chromatin state, and gene

expression levels) given biological sequences as predic-

tors. The most powerful part of deep learning models is

their ability to make ab initio predictions on new, previ-

ously unseen sequence data (i.e. data not in the training

set), which has several important implications.

First, although there are a huge number of genetic

variants in a natural population, deep learning models

can be trained on a small subset of them to predict the

effect of all other variants (i.e. the whole mutation space)

[43��]. For example, models trained on some genes can be

used to make predictions on other genes. These include
Current Opinion in Plant Biology 2020, 54:34–41
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not only common alleles, but also low-frequency and rare

variants, irrespective of the magnitude of their effects. As

the biology governing molecular processes in closely

related species are conserved, models trained in one

species can be applied directly on closely related species

[44]. Or these models can be used as teacher models in

transfer learning tasks in closely related species, facilitat-

ing the migration of knowledge from well-studied species

(such as Arabidopsis) to related but poorly characterized

species (such as other species in the Brassicaceae).

Second, when several variants within an important loci

(such as a QTL for a certain trait) are in close linkage

disequilibrium (Figure 2a), we may introduce the variants

from one haplotype to another one by one by in silico
mutagenesis, and then evaluate their impacts on the

molecular phenotype individually, thereby prioritizing

causal variants (Figure 2b,c). Such a breakage of linkage

disequilibrium would be labor-intensive and difficult to

scale up in wet lab experiments, and virtually impossible

in nature.

Third, with a rich repertoire of deep learning models each

targeting a distinct molecular phenotype, or a multi-task

learning model targeting multiple molecular phenotypes

simultaneously, it is possible to predict not only the causal
Figure 2

(a)

(b) 

Application of deep learning models on sequence variants.

(a) In natural populations, association analyses often identify groups of varia

molecular phenotype, but the identification of causal variants, as well as the

with association analysis alone. To evaluate the effects of variants in linkage

introduced into another haplotype one at a time by in silico mutagenesis. (b

learning models, each targeting a distinct molecular phenotype. (c) Thus, de

variants (denoted by yellow asterisks) by breaking linkage disequilibrium in 

asterisks) for each putative causal variant.
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variant underlying a QTL, but also its potential molecular

mechanism (Figure 2c). Taken together, deep learning

models can greatly push forward our understanding of

genomic variation underlying terminal phenotypes.

Deep learning for breeding 4: breeding-by-
editing
An important component of crop breeding is the purging

of deleterious alleles in the context of environmental

adaptation and modern management practices. The past

30 years, previously summarized as the Breeding 3.0 era

[6�], have seen a great triumph in marker-assisted selec-

tion, association analysis, and genomic prediction.

It is worth noting that the genetic variants used in marker-

assisted breeding during the Breeding 3.0 era are not

necessarily variants causal to agronomic traits. What can

breeders do when they have the power to predict causal

beneficial and deleterious variants at scale? One answer is

the breaking of linkage drag by genome editing: benefi-

cial alleles can be directly introduced into elite germ-

plasms by editing, rather than by backcrossing from

another donor parent carrying deleterious alleles at linked

loci. Similarly, deleterious alleles can be purged from the

genome effectively by editing. Indeed, simulations have

shown that breeding in livestock can be significantly
(c)
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nts in close linkage disequilibrium associated with a terminal trait or a

 molecular mechanism underlying each variant, is difficult to achieve

 disequilibrium individually, variants from one haplotype can be

) Then the effects of each mutation are predicted with a group of deep

ep learning in genomics provides a powerful tool to prioritize causal

silico and to identify potential molecular mechanisms (denoted by black
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accelerated by using genome editing to introduce bene-

ficial variants into the genome [45�], or to remove delete-

rious alleles [46�]. However, because of more prominent

interactions between genotypes and environments in crop

species than in livestock, it is conceivable that prediction

of allele effects (whether it is deleterious, beneficial or

adaptive) would be more challenging in crop species.

Ideally, environment-specific models or models taking

environmental factors as additional inputs would alleviate

this problem. Thus, it is reasonable to conceptualize that

functional variants predicted by deep learning models

will be the key in the next breeding era, termed Breeding

4.0, in which genetic improvement of crop species largely

depends on genome editing.

More importantly, we are not restricted to known benefi-

cial variants existing in nature when carrying out this

breeding-by-editing approach. Instead, we enjoy com-

plete freedom to create novel beneficial alleles based

on our deep learning models’ ‘understanding’ of the

biological processes of interest. For example, Rodri-

guez-Leal et al. edited the tomato CLAVATA3 gene

(SlCLV3) promoter to increase the fruit size and optimize

the inflorescence branching [47�]. Because of a lack of

functional annotations in the SlCLV3 promoter, saturated

promoter mutagenesis by the CRISPR/Cas9 system was

employed, followed by selection of mutants with desir-

able fruit and inflorescence traits. In the future, with a

deep learning model predicting gene expression levels

from promoter sequences, it is possible to identify key cis-
elements on the SlCLV3 promoter by saliency scores at

single-nucleotide resolution, predict their loss-of-func-

tion effects on SlCLV3 gene expression, and then imple-

ment model-guided promoter editing.

Another way to create novel genomic elements with

specific functions is to apply generative models in syn-

thetic biology. For example, it is possible to train models

to create new promoters with spatiotemporal specificity

after learning the mutation space of existing promoters.

However, although generative models such as variational

autoencoders and generative adversarial networks have

drawn much attention recently, their potential applica-

tions in synthetic biology are still quite limited. One such

example is to apply GANs to generate synthetic DNA

sequences coding for antimicrobial peptides [48]. It will

be promising to use generative models to create new

DNA elements, genes, or even regulatory circuits with

desirable functions, and apply them to crop improvement.

Conclusion
In natural plant populations, association mapping has

been successfully exploited to reveal genetic loci associ-

ated with molecular phenotypes or terminal traits. How-

ever, due to prevalent linkage disequilibrium among

nearby variants, causal variants underlying phenotypic

variation are still difficult to pinpoint, hampering the
www.sciencedirect.com 
genetic improvement of plants by genome editing. On

the other hand, progress in molecular biology in the past

half century has discovered many of the molecular mech-

anisms governing the flow of information from DNA to

molecular phenotypes such as RNA and protein, and the

accumulation of such data has recently been accelerated

by various omics approaches based on advanced sequenc-

ing techniques. Thus, it is natural to hypothesize that

prioritization of causal variant should be achievable by

combining models that can ‘understand’ the flow of

information from DNA to molecular phenotypes, as well

as association mapping studies linking molecular pheno-

types to terminal traits. Indeed, such a framework has

been proven not only feasible, but also powerful in human

genetics to reveal variants (including rare alleles) under-

lying certain genetic diseases [43��,49��]. This trend,

however, remains not fully exploited by the plant com-

munity. The tremendous progress in the development of

deep learning models is molecular phenotype prediction,

as well as application of these models in functional variant

discovery by in silico breakage of linkage disequilibrium.

We propose that such a framework is a promising

approach for genome-wide identification of deleterious

and adaptive variants, a prerequisite for editing-based

genetic improvement of crops in future agriculture.
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