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ABSTRACT

Association-mapping methods promise to overcome the limitations of linkage-mapping methods. The
main objectives of this study were to (i) evaluate various methods for association mapping in the autog-
amous species wheat using an empirical data set, (ii) determine a marker-based kinship matrix using a
restricted maximum-likelihood (REML) estimate of the probability of two alleles at the same locus being
identical in state but not identical by descent, and (iii) compare the results of association-mapping
approaches based on adjusted entry means (two-step approaches) with the results of approaches in which
the phenotypic data analysis and the association analysis were performed in one step (one-step approaches).
On the basis of the phenotypic and genotypic data of 303 soft winter wheat (7riticum aestivum L.) inbreds,
various association-mapping methods were evaluated. Spearman’s rank correlation between Pvalues calcu-
lated on the basis of one- and two-stage association-mapping methods ranged from 0.63 to 0.93. The mixed-
model association-mapping approaches using a kinship matrix estimated by REML are more appropriate
for association mapping than the recently proposed QK method with respect to (i) the adherence to the
nominal a-level and (ii) the adjusted power for detection of quantitative trait loci. Furthermore, we showed
that our data set could be analyzed by using two-step approaches of the proposed association-mapping
method without substantially increasing the empirical type I error rate in comparison to the corresponding

one-step approaches.

STIMATION of the positions and effects of quanti-
tative trait loci (QTL) is of central importance for
marker-assisted selection. In plant genetics, this has so far
been accomplished by applying classical linkage-mapping
methods. Besides high costs (PARISSEAUX and BERNARDO
2004), their major limitations are a poor resolution in
detecting QTL and the fact that with biparental crosses of
inbred lines only two alleles at any given locus can be
studied simultaneously (FLINT-GARCIA et al. 2003).
Association-mapping methods, which have been success-
fullyapplied in human genetics to detect genes coding for
human diseases (e.g., OzAKI ¢t al. 2002), promise to over-
come these limitations (KRAAKMAN et al. 2004). There-
fore, in plant genetics several attempts were made for
detecting QTL by using such methods (e.g., KRAAKMAN
et al. 2004; OLSEN et al. 2004).

Application of association-mapping approaches in
plants is complicated by the population structure pre-
sent in most germplasm sets (FLINT-GARCIA et al. 2003).
To overcome this problem, linear models with fixed ef-
fects for subpopulations (e.g., BRESEGHELLO and SORRELLS
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2006) or a logistic regression-ratio test (PRITCHARD et al.
2000b; THORNSBERRY ¢t al. 2001) can be employed. Owing
to the large germplasm sets required for dissecting com-
plex traits, the probability increases that partially related
individuals are included. This applies in particular when
genotypes selected from plantbreeding populations are
used for association mapping (e.g,, THORNSBERRY el al.
2001; KRAAKMAN et al. 2004). The above-mentioned ap-
proaches fail to adhere to the nominal a-level, however, if
the germplasm set under consideration comprises related
individuals (¢f. THORNSBERRY et al. 2001).

Recently, Yuet al. (2006) proposed the QKmixed-model
association-mapping approach that promises to correct
for linkage disequilibrium (LD) caused by population
structure and familial relatedness. The authors demon-
strated the suitability of their new method for association
mapping in humans and maize. Besides natural popula-
tions of Arabidopsis thaliana (c¢f. ZHAO et al. 2007), the
suitability of the QK method has to be evaluated in
breeding germplasm of autogamous species, because
their population structure is presumably high and levels
of familial relatedness are diverse (¢f. GARRIS et al. 2005).

In contrast to coancestry coefficients calculated from
pedigree records, marker-based kinship estimates may
account for the effects of deviations from expected
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parental contributions to progeny due to selection or
genetic drift (BERNARDO et al. 1996). Therefore, marker-
based kinship estimates underlying the studies of YU et al.
(2006) and ZHAO et al. (2007) might be more appropriate
for association-mapping approaches than coancestry
coefficients calculated from pedigree records. A difficulty
with calculation of marker-based kinship estimates arises
regarding the definition of unrelated individuals (BER-
NARDO 1993). The marker-based kinship matrix under-
lying the study of YU et al. (2006) was determined on the
basis of the definition that random pairs of inbreds are
unrelated, whereas ZHAO ¢t al. (2007) defined pairs of
inbreds that do not share any allele as unrelated.
However, both definitions are rather arbitrary. Therefore,
we propose to estimate the conditional probability that
marker alleles are alike in state, given that they are not
identical by descent (LyncH 1988), by restricted maxi-
mum likelihood (REML).

As afirst step of all earlier association-mapping studies
in a plant genetics context, phenotypic data were
analyzed and entry means or adjusted entry means were
calculated for each individual of the population under
consideration. These estimates were then used in a
second step for the actual association analysis. Such two-
stage procedures generally account neither for het-
eroscedasticity (heterogeneity in experimental errors)
nor for possible covariances among the adjusted entry
means (CuLLiS et al. 1998). These problems can be
overcome by applying a one-stage association-mapping
approach in which the phenotypic data analysis and the
association analysis are performed in one step.

The objectives of our research were to (i) evaluate various
methods for association mapping in the autogamous
species wheat using an empirical data set, (ii) determine a
marker-based kinship matrix based on a REML estimate of
the probability that two inbreds carry alleles at the same
locus that are identical in state but not identical by descent,
and (iii) compare the results of one- and two-stage ap-
proaches for various association-mapping methods.

MATERIALS AND METHODS

Plant materials, field experiments, and molecular marker
analyses: A total of 303 soft winter wheat ( Triticum aestivumL.)
inbreds developed by Lochow-Petkus (Bergen-Wohlde, Germany)
were used for this study. For 194 entries, pedigree information
up to the great-grandparents was available, whereas for the
other 109 entries no pedigree records were available. In 2005,
all 303 entries were evaluated for grain yield in a series of five
breeding trials at four to six locations, with the number of
entries per trial ranging from 36 to 110. The experimental
design for each trial was a lattice design with two to four rep-
lications per location. Two of the 303 entries were evaluated as
common entries in each lattice.

All 303 entries as well as five wheat cultivars, which are
unrelated by pedigree to the 303 entries, were fingerprinted by
Lochow-Petkus following standard protocols with 36 simple
sequence repeat markers and one single-nucleotide polymor-
phism marker. The 37 marker loci were randomly distributed

across 19 of the 21 wheat chromosomes. Map positions of all
markers were determined on the basis of the linkage map of
Lochow-Petkus (unpublished data).

Statistical analyses: Phenotypic data analyses: The phenotypic
data were analyzed on the basis of the statistical model

Yijkno = M +tg+ l] + (gl)l] + lj + Tnjk + bonjk + Cijkno s

where yjj,, was the phenotypic observation for the ith entry at
the jth location in the oth incomplete block of the nth replicate
of the kth trial, i was an intercept term, g;was the genetic effect
of the ith entry, /; was the effect of the jth location, #;; was the
effect of the kth trial at the jth location, 7, was the effect of
the nth replicate of the kth trial at the jth location, b, was the
effect of the oth incomplete block of the nth replication of
the kth trial at the jth location, and ¢, was the residual. Error
variances were assumed to be heterogeneous among loca-
tions. For estimation of variance components, all effects were
considered as random.

For estimating entry means, we regarded g; as fixed and all
other effects as random (PATTERSON 1997). Over all trials, an
adjusted entry mean M; was calculated for each of the 303
entries as

Mi:}l+@7

where [L and g; denote the generalized least-squares estimates
of w and g;, respectively.

Two-stage association analyses: On the basis of 10 different
statistical models (summarized in Table 1), adjusted entry
means M;of the 303 entries were used to calculate a P-value for
the association of each of the 37 marker loci with the
phenotypic trait.

The first model was an ANOVA model of the form

My =+ ap + ey,

where M;,was the adjusted entry mean of the ith entry carrying
allele p, a, the effect of allele p, and ¢, the residual.

The statistical model underlying our mixed-model associa-
tion-mapping approaches (Table 1) was

z
Mi/, = Wn + ay + ZDiuvu + g,* + Cipy

u=1

where v, was the effect of the uth column of the population
structure matrix D and g;* was the residual genetic effect of the
ith entry. The matrix D, which comprised zlinear independent
columns, differed among the various association-mapping
methods (Table 1) and, thus, this matrix is described in the
sections detailing the individual methods. The variance of the
random effects g* = {gi*, ... 7g§§03} and e = {e;1,..., ¢303,19}
was assumed to be Var(g*) = 2Ko?, and Var(e) = R,07, where
Kwas a 303 X 303 matrix of kinship coefficients that define the
degree of genetic covariance between all pairs of entries. o2,
was the genetic variance and o2 was the residual variance, both
estimated by REML. For a direct comparison of our results to
those of YU et al. (2006), R; was a 303 X 303 matrix in which
the off-diagonal elements were 0 and the diagonal elements
were reciprocals of the number of phenotypic observations
underlying each adjusted entry mean. In a second association-
mapping approach, instead of matrix R; we used matrix Ry, in
which the diagonal elements were calculated as the square of
the standard errors of the adjusted entry means M (PIEPHO
and MOHRING 2007).

For the QK mixed-model method (Yu et al. 2006), the
population structure matrix Q was calculated by the software
STRUCTURE (PrITCHARD et al. 2000a), which gives for each
individual under consideration the probability of membership
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TABLE 1

Mixed-model methods used for association mapping and the corresponding statistical models for the two-stage
association approaches analyzed in this study

Population structure

Method Statistical model matrix D Kinship matrix K
0K My =n+a,+ > Dyv, + g+ e STRUCTURE SPAGeDi
u=1
Z
PK My, =p+a,+ Y Dyv,+gt+e First eight principal SPAGeDi
u=1 components
K My =pn+a,+g*+e, — SPAGeDi
G My =p+a,+ gF + ep — Pedigree information
Kunrel Ml[l =K + d[, + gz* + ezp - Klnrel ij = % + 17 T = Sentries vs. cultivars
Z
QKo 70 My =p+a,+ Y Dyv, + gt + ey STRUCTURE Kpy =320 41, T=0.70
u=1
Z
PKy 79 My =p+a,+ > Dy, + g + eip First eight principal T=10.70
u=l components
Ko.70 My =p+a +g*+e — T=0.70
Ky 35 My =pn+a,+g*¥+te, — T=0.35

For a detailed definition of the statistical models and description of the different methods see MATERIALS AND METHODS.

in each of the z + 1 subpopulations. In our investigations, the
set of 303 entries was analyzed by setting zfrom 0 to 13 in each
of five repetitions. For each run of STRUCTURE, the burn-in
time as well as the iteration number for the Markov chain
Monte Carlo algorithm was set to 100,000, following the
suggestion of WHITT and BUCKLER (2003).

Plant populations often comprise related and/or admixed
entries (Camus-Kulandaivelu et al. 2007). Therefore, we used
the ad hoc criterion described by Evanno et al. (2005) to
estimate the number of subpopulations, as it promises to
reliably detect the true number of subpopulations also in
complex genetic situations. The z + 1 columns of the Q matrix
add up to one and, thus, only the first zcolumns were used as a
D matrix in the QK method to achieve linear independence.
Furthermore, in accordance with YU et al. (2006) the kinship
matrix Kwas calculated on the basis of the 37 marker loci using
the software package SPAGeDi (HARDY and VEKEMANS 2002),
where negative kinship values between inbreds are set to 0.

The PKmethod was based on the same kinship matrix K as
used for the QK method. Following ZHAO et al. (2007),
however, the first eight principal components of an allele-
frequency matrix, which explain altogether 36.8% of the
variance, were used as a D matrix of the PKmethod (Table 1).

The Kand G methods were based on mixed models that do
not include any v, effects (Table 1). The K method uses the
same kinship matrix K as used for the QK method. For the G
method, we estimated the K matrix for all 303 inbreds on the
basis of the available pedigree records, according to the rules
described by FALCONER and MACKAY (1996), and using PROC
INBREED in SAS (Sas INsTiTUTE 2004). The coancestry
coefficient between inbreds with unknown relationship was
set to 0 (BERNARDO 1993).

BERNARDO (1993) proposed calculating the kinship co-
efficient Kj; between inbreds i and j (i.e., the probability that
inbreds 7and j carry alleles at the same locus that are identical
by descent) on the basis of marker data according to

S
Y I*Tz‘j

+1,

where S;; is the proportion of marker loci with shared variants
between inbreds iand jand Tj;is the average probability that a

variant from one parent of inbred i and a variant from one
parent of inbred j are alike in state, given that they are not
identical by descent. Thus, Tj;is a function of the proportion of
variants common to unrelated inbreds and is specific for each
pair of inbreds (LyNcH 1988). In practice, the value of T; is
unknown.

Our K, method uses a matrix K,,,,,.; based on one 7'value
for all pairs of inbreds obtained as the average S;;between each
of the five wheat cultivars and the 303 entries, as proposed by
LyncH (1988) and MELCHINGER et al. (1991).

The QK; PKy; and K methods were based on a matrix Ky
that was calculated according to
Sij—1
1-T

We examined T = 0, 0.025, ..., 0.975 to obtain a REML
estimate of 7. Negative kinship values between inbreds were set
to 0.

One-stage association analyses: Phenotypic data analyses and
association analyses were performed in one step, on the basis
of the model

Kpj = +1.

Vijnop = T ap + ZDiuvu + g: +1+ (a*l)m
u=1

+(¢" D) o+ T & Dok + €

where, except for a, and wv,, all effects were regarded as
random and error variances were assumed to be heteroge-
neous among locations. Var(g*) and D were modeled by the
same nine methods as in the two-stage analysis (Table 1).
Power simulations: Because of the high computational effort
of the one-stage association analyses, our power simulations
were conducted only for the two-stage association approaches.
For each of the examined methods (ANOVA, QK, PK, K, G,
Kunret, QKo.70, PKo 70, Ko.70, and Ky 35) the empirical type [ error
rate o* was calculated on the basis of the Pvalues observed
for the 37 marker loci in a scenario without simulated QTL
(o = 0.05). In our study, we examined the power to detect
a QTL of interest, which (i) explained a fraction of the
phenotypic variance and (ii) was in complete LD with one
marker locus, as follows. The QTL effect G, calculated as
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r= 0.1 times the standard deviation of the vector of adjusted
entry means M of the 303 wheat inbreds, was assigned in
consecutive simulation runs to each of the detected 202
marker alleles whereas all other alleles were assigned the
genotypic effect 0. In each simulation run, the genotypic value
of each entry ¢ was calculated by summing up the QTL effects
of the alleles and the adjusted entry mean M; The above-
mentioned two-stage association-mapping methods were run
on the inbreds’ genotypic values to determine whether the
QTL can be detected. To adjust the association-mapping
methods for their different empirical type I error rates a*,
we calculated the adjusted power as the proportion of QTL
detected ata = 0.05%/a* (YU et al. 2006). In addition to r=0.1,
we examined r=0.2,0.3,..., 2.

The percentage (m) of the total phenotypic variation
explained by a QTL effect G, was calculated as

g(1—g)r*
(g1 —g)r* +1—=1/s)

where s was the sample size and g the allele frequency of the
QTL (Yu et al. 2006).

Measures for comparison of association-mapping methods: Under
the assumption that the random markers m=1, 2,..., 37 in
our study are unlinked to functional polymorphisms control-
ling yield, it is expected that the P-values observed for an
association-mapping approach are uniformly distributed (cf.
YU et al. 2006). Therefore, for the Pvalues observed for all
marker loci and association-mapping methods, expected P-
values were calculated as r(x,,) /37, where r(x,,) is the rank of
the Pvalue x,, observed for the mth marker locus. Association-
mapping methods that adhere to the nominal a-level show a
uniform distribution of P-values, i.e., a diagonal line in the plot
of observed vs. expected Pvalues. The mean of the squared
difference (MSD) between observed and expected P-values of
all marker loci was therefore calculated as a measure for the
deviation of the observed Pvalues from the uniform distribu-
tion. High MSD values indicate a strong deviation of the ob-
served Pvalues from the uniform distribution, which suggests
that the empirical type I error rate of these approaches is
considerably higher than the nominal a-level.

Computer simulations were performed to examine which
difference in MSD values between two association-mapping
methods could be expected purely by chance. The simulation
accounted for correlation among P-values of two methods as
follows. Pairs of Pvalues were drawn from a bivariate beta
distribution (MAGNUSSEN 2004) with parameters a = 3 =1
and correlation equal to the observed correlation Gy, for a
pair of methods. Thus, the marginal distribution of P-values
for a method was uniform, and the correlation among
methods equaled C,ps. In each simulation run, the difference
of the MSD value for both methods was calculated. This
procedure was repeated 100,000 times and the 95% quantile
of the MSD difference was determined. We investigated the
following four pairs of two-stage association approaches: (i)
QK/ANOVA, (ii) QK/K, (i) QK/ G, and (iv) QK/ QKo.o.

For methods QK5 PKy; and Ky; we profiled the deviance for
T Spearman’s rank correlation was calculated between the
observed Pvalues of one- and two-stage association-mapping
approaches.

All mixed-model calculations were performed with ASReml
release 2.0 (GILMOUR et al. 2006).

RESULTS

For grain yield, the adjusted entry means M; of the 303
elite inbreds varied between 7.52 and 9.60 tha™', with an
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F1GUrE 1.—Principal coordinate analysis of the 303 entries
as well as five wheat cultivars, which are unrelated by pedigree
to the 303 entries, based on Rogers’ distance estimates. Per-
centages in parentheses refer to the proportion of variance
explained by the principal coordinate.

average of 8.66 tha'. The genotypic variance was 0.085
> ha ? and the genotype X environment variance was
0.090 ¢* ha=2 For the different locations, the error vari-
ance ranged from 0.081 to 0.200 ¢* ha 2.

The total number of marker alleles detected for the
37 loci was 202, with the number of alleles per marker
locus ranging from 2 to 12. The average number of
alleles per locus was 5.5. In principal coordinate analysis
based on Rogers’ distance estimates of the 303 entries as
well as five wheat cultivars, the first two principal
coordinates explained 14.6 and 10.7% of the molecular
variance (Figure 1). With respect to these two principal
coordinates, no clear grouping of inbreds could be
detected. The model-based approach of STRUCTURE
revealed eight subpopulations.

For the examined levels of 7, the MSD between
observed and expected Pvalues for the QKyand PKy
methods ranged from 0.002 to 0.035 (Figure 2). By
comparison, the MSD was higher for the K;method and
varied for the various levels of T between 0.010 and
0.090. The deviances for the three methods QK5 PKy
and Kyranged from ~ —270 to ~ —350, with smallest
values observed for T'= 0.775.

The MSD between observed and expected P-values of
the QK and PK methods was 0.010 (Table 2), which was
10 times lower than that of the ANOVA approach
(0.100). For the K, G, and K, methods, the MSDs
were 0.016,0.077, and 0.013, respectively. The computer
simulations that are based on the correlated beta
distribution for the four pairs of association methods
OK/ANOVA, QK/ K, QK/ G,and QK/ QK 7o resulted in a
95% quantile of MSD differences of 0.009, 0.006, 0.008,
and 0.004, respectively. The trend observed for the MSD
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of the mixed-model approaches based on the Ry matrix
was the same as that found for the approaches based on
the Ry matrix.

The adjusted power to detect QTL of all association-
mapping approaches increased with increasing size of
the genetic effect assigned to an allele (Figure 4). For
small as well as large genetic effects the slope of the
power curve was flat, whereas for genetic effects of
medium size the slope was steep. For all examined sizes
of genetic effects, the adjusted power of the QK; o and
PK, 70 methods was higher than that of the QK and PK
methods. In comparison with the other association-
mapping methods, the ANOVA method and the G
method showed the lowest adjusted power to detect
QTL for all examined sizes of genetic effects.

The MSD between observed and expected P-values for
the one-stage association-mapping methods ranged from
0.002 (QKy70) to 0.091 (PK). The trend observed for
these approaches was similar to that found for the two-
stage approaches (Table 2). Spearman’s rank correlation
between the Pvalues of one- and two-stage association

TABLE 2

Mean of the squared differences (MSD) between observed
and expected P-values for various mixed-model association-
mapping methods as well as Spearman’s rank correlation
coefficient p between the P-values of one- and
two-stage association-mapping approaches

MSD

Two stage Spearman’s p
R, Ry R, Ry

Method matrix matrix One stage matrix  matrix
0K 0.010 0.013 0.088 0.74 0.79
PK 0.011 0.024 0.091 0.73 0.75
K 0.016 0.022 0.061 0.67 0.69
G 0.077 0.090 0.090 0.63 0.64
Kinrel 0.013 0.016 0.042 0.63 0.76
QK70 0.003 0.003 0.002 0.84 0.93
PKy 70 0.002 0.005 0.003 0.87 0.93
Koy .70 0.015 0.020 0.009 0.76 0.88
Ko.35 0.010 0.011 0.004 0.63 0.80

analyses ranged from 0.63 to 0.87 for the nine mixed-
model methods based on the R; matrix. Likewise, the
correlation ranged from 0.64 to 0.93 for association-
mapping approaches based on the Ry matrix.

DISCUSSION

Phenotypic data analyses in association-mapping
approaches: Previous association-mapping approaches
in a plant genetics context were mostly based on entry
means (e.g., ARANZANA et al. 2005; Yu et al. 2006). The
more complex is the phenotypic trait under consider-
ation, however, the more elaborate are the field designs
as well as phenotypic data analyses that are required.
Therefore, we used an efficient method for calculating
adjusted entry means M; (SmitH et al. 2001). In this
analysis, error variances were assumed to be heteroge-
neous among locations. The statistical model is easily
extended to other settings, e.g., heterogeneous block
and replication variances or modeling of spatial hetero-
geneity at the plot level (nearest-neighbor analyses;
MOREAU et al. 1999).

Comparison of various association-mapping ap-
proaches: Investigations on the adjusted power to detect
QTL as well as on the type I error rate of association-
mapping approaches based on empirical data require that
the marker loci are unlinked to polymorphisms control-
ling the trait under consideration. In this study this
assumption seems to be reasonable for two reasons. First,
findings of BRESEGHELLO and SORRELLS (2006) suggest
that LD in winter wheat inbreds decays within 5 ¢M, which
is considerably shorter than the average marker distance in
our study. Second, the 37 marker loci were randomly
selected from the wheat genome. Consequently, our study
was based on the assumption that no polymorphisms
affecting yield were present in a region of 370 cM, which
corresponds to only 10% of the wheat genome (QUARRIE
et al. 2005). Similar to other studies comparing association-
mapping approaches based on empirical data (e.g., YU et al.
2006; ZHAO et al. 2007), however, we cannot rule out the
possibility that some markers might be linked to functional
polymorphisms of the trait under consideration.
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Similar to other studies (e.g., YU et al. 2006; ZHAO et al.
2007), we used the same markers for estimation of pop-
ulation structure as well as familial relatedness as were
used for calculating the MSD between observed and
expected P-values. Theoretical considerations suggest
that by this procedure that the MSDs between observed
and expected Pvalues are underestimated for markers
that were not included in the estimation of population
structure and familial relatedness. However, this issue
did not influence our conclusions regarding the eligi-
bility of various methods for association mapping, be-
cause they were compared on the basis of the same set of
markers.

Our power simulations assumed a QTL that is in
complete LD with one marker locus (Yu et al. 2006) . This
assumption maximizes the power for QTL detection. In
most empirical studies, however, no markers are avail-
able that are in complete LD with the QTL. Therefore,
for such studies, a lower power for QTL detection is
expected depending on the extent of LD between
marker and QTL. A further factor hampering the
detection of the QTL of interest, which was neglected
in our power simulations, is additional QTL that are
linked to the QTL of interest. The incomplete LD
between marker and QTL as well as additional linked
QTL, however, is expected to reduce the power for QTL
detection of all association-mapping methods to the
same extent. Therefore, no influence on our conclu-
sions regarding the ranking of various methods for
association mapping is expected with respect to the
assumptions made in our power simulations.

ANOVA approach: A frequently used method for
association mapping in a plant genetics context is the
ANOVA approach (e.g., KRAAKMAN et al. 2004; OLSEN
et al. 2004), which was used in the current study as a
reference method. Under the assumption that the low
number of random marker loci in our study is unlinked
to the polymorphisms controlling grain yield, association-
mapping methods that adhere to the nominal a-level
show a uniform distribution of Pvalues. By contrast,
we observed a nonuniform distribution of Pvalues with
the ANOVA approach (Figure 3). This finding indicates
that this method is inappropriate for association map-
ping in our germplasm set, because it results in a pro-
portion of spurious marker—phenotype associations that
is considerably higher than the nominal type I error
rate.

In addition to the nonuniform distribution of P-values
with the ANOVA approach, STRUCTURE revealed eight
subpopulations. Consequently, absence of distinct sub-
populations in the principal coordinate analysis does
not necessarily imply that population structure can be
neglected in the association-mapping approach. This
might be explained by the fact that the current study was
based on germplasm from a line-breeding program of
an autogamous species. In contrast to germplasm from
hybrid-breeding programs (¢f. SticH et al. 2005), no
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F1GUrE 3.—Plot of observed vs. expected P-values for the 10
two-stage association-mapping methods.

distinct subpopulations are expected for such germ-
plasm as population structure is disregarded when choos-
ing the parents of a cross. Nevertheless, line breeding
generates high levels of population structure and diverse
levels of familial relatedness (cf: GARRIS et al. 2005).

OK approach: Recently, YU et al. (2006) proposed a new
association-mapping approach called the QK method.
The MSD between observed and expected P-values that
was found for this method was ~10 times lower than that
observed for the ANOVA approach (Table 2), and this
difference was considerably larger than the 95% quan-
tile observed in our computer simulations on the
correlated beta distribution. This underlines the advan-
tage of the QK method over the ANOVA method for
association mapping not only in allogamous species
such as humans and maize, as suggested by the results
of Yu et al. (2006), but also in the autogamous species
wheat. Similar findings were reported by ZHAO et al.
(2007) for A. thaliana.

An association test frequently used in a plant genetics
context is the logistic regression-ratio test (PRITCHARD
et al. 2000b; THORNSBERRY ¢/ al. 2001). The null hy-
pothesis of this test states that the molecular marker
under consideration is associated with population struc-
ture, whereas under the alternative it is associated both
with population structure and with the phenotypic
variation. The logistic regression-ratio test and the
EIGENSTRAT method (PRrRICE et al. 2006), recently
proposed in a human genetics context, as well as linear
models with fixed effects for subpopulations, however,
correct only for LD caused by population stratification.
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The QK method, which allows the modeling of popula-
tion structure and also of familial relatedness, proved to
be superior to this class of association-mapping methods
with respect to the adherence to the nominal a-level as
well as to the adjusted power for QTL detection (e.g., YU
et al. 2006; ZHAO et al. 2007). Therefore, the logistic
regression-ratio test and the EIGENSTRAT method, as
well as linear models with fixed effects for subpopula-
tions, were not examined in our study.

In our study, the difference between observed and
expected Pvalues for the QK method was slightly higher
than that in the study of YU et al. (2006). This might be
explained by (i) less precise kinship estimates resulting
from the lower marker density underlying our study and
(ii) high levels of population structure and diverse levels
of familial relatedness expected in germplasm of an
autogamous species (¢f. GARRIS et al. 2005) selected from
plant-breeding programs. These issues did not influence
our conclusions regarding the ranking of various meth-
ods for association mapping, because they were com-
pared on the basis of the same data set.

Despite promising results for the QK association-
mapping approach, this method has several drawbacks.
Estimation of the Q matrix using STRUCTURE is com-
putationally demanding (BALDING 2006; PrICE et al.
2006). Even more problematic is that STRUCTURE was
designed for unrelated individuals that belong to pop-
ulations in Hardy—Weinberg equilibrium (PRITGHARD
et al. 2000a). For germplasm sets of most species, how-
ever, these assumptions are not met and, thus, results of
STRUCTURE demand careful interpretation (¢f. CAMUS-
KULANDAIVELU ef al. 2007). Because of these issues, we
examined the PK mixed-model association-mapping ap-
proach in which the Q matrix from STRUCTURE was
replaced by a matrix comprising the first eight principal
components from the allele-frequency matrix.

PK approach: The MSD between observed and ex-
pected P-values, which was found for this method, was
similar to that observed for the QK approach (Figure 3).
Furthermore, both methods yielded a similar adjusted
power of QTL detection (Figure 4). In accordance with
ZHAO et al. (2007), these findings suggested that the PK
method is a promising alternative to the QK method.

The QK method as well as the PK method is based on
the integration of the fixed effects in the association-
mapping model. This leads to a loss of degrees of free-
dom, which is mainly a problem if the number of entries
is low. Furthermore, such approaches hamper the de-
tection of loci contributing to phenotypic differences
among subpopulations, because the differences be-
tween subpopulations are disregarded in the estimation
of the genotypic effects of the loci under consideration.
Because of these issues, we examined mixed-model
association-mapping approaches that are not based on
the assignment of individuals to subpopulations.

G approach: In plant-breeding populations, extensive
information about pedigree relationships is available. In
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F1cure 4.—Adjusted power to detect quantitative trait loci
(QTL) for the 10 two-stage association-mapping methods de-
pending on the size of the QTL effect G,. The percentage of
phenotypic variation explained by a QTL was calculated for
an allele frequency of 0.2.

our study, pedigree records were used to calculate the K
matrix for the G mixed-model approach. Despite the
fact that pedigree information was lacking for about
one-third of all inbreds, the MSD between observed and
expected Pvalues was slightly lower for this method
than that for the ANOVA (Figure 3). The difference in
MSD between these two methods was slightly higher
when comparing them on the basis of a data set com-
prising only entries with available pedigree records
(data not shown). These observations suggested that
for our data set the G method is more appropriate for
association mapping than the ANOVA approach.

Nevertheless, the MSD between observed and ex-
pected Pwvalues for the G method was considerably
higher than those of the QK and PK methods irrespec-
tive of whether the complete data set (Table 2) or a data
set comprising only entries with available pedigree
records (data not shown) was used. The opposite was
true for the adjusted power of QTL detection (Figure
4). These observations suggest that in our study the G
method was less appropriate for association mapping
than the QK and PK methods. This might be explained
by (i) incomplete or wrong pedigree records and (ii)
differences between actual coancestry and coancestry
computed from pedigree records due to selection and
genetic drift (BERNARDO 1993; SCHUT e/ al. 1997; Tams
et al. 2004).

K approach: For the mixed-model association-mapping
approach K, we observed a lower value for the MSD be-
tween observed and expected P-values than that calcu-
lated for the G method irrespective of whether the
complete data set (Table 2) or a data set comprising only
entries with available pedigree records (data not shown)
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was used. This observation indicated that kinship coef-
ficients estimated from molecular marker data are more
appropriate than coancestry coefficients calculated
from pedigree records. Nevertheless, for the K method
the MSD was higher than that observed for the QK
method as well as PK method, and our results on the
correlated beta distribution suggested that this differ-
ence is considerably larger than what is expected at
random. This result might be explained by the fact that
the software package SPAGeDi (HARDY and VEKEMANS
2002), proposed in the study of Yu et al. (2006) for
calculation of the kinship coefficients, assumes that
random pairs of individuals of the germplasm set under
consideration are unrelated and assigns them a kinship
coefficient of 0.

This definition of unrelated individuals seems to be
arbitrary. Furthermore, it results in a kinship matrix for
which a large number of pairwise kinship estimates are
negative. YU et al. (2006) replaced these negative values
by 0, arguing that such pairs of individuals are less re-
lated than random pairs of individuals. This approach
ignores information on the structure of unrelated indi-
viduals, which was composed in the kinship matrix, and
consequently necessitates the inclusion of the Q matrix
from STRUCTURE in the mixed model. This suggests
examining mixed-model association-mapping approaches
that are based on K matrices calculated for different
thresholds 7

Approaches based on K matrices calculated for differ-
ent values of T: For the QKy; PKy and Ky methods, the
optimum value of 7, which was calculated for the current
data set using a REML approach, was 0.775 (Figure 2). The
value of T estimated in this way was in good accordance
with the optimum 7 identified using the MSD profiles.
This observation suggested that for association-mapping
approaches the optimum 7 value might be identified
using a REML approach.

Because the REML-based deviance, used to estimate 7,
can be compared only among models that are based on
the same set of fixed effects, we used the MSD between
observed and expected Pvalues for comparison of the
QKy; PKy; and Kymethod. The MSD profiles of QKand
PKyrhad their global minimum at 7'= 0.70, while that of
the Ky method was found for T'= 0.35 (Figure 2). This
observation might be explained by the fact that for an
association-mapping model, which is not based on the
assignment of individuals to subpopulations, lower values
for Treduce the number of negative pairwise kinship
estimates. Thereby, the use of information concerning
the structure of unrelated individuals, which was com-
posed in the kinship matrix Ky is improved.

The MSD observed for the K35 method was slightly
lower than that of the QKas well as the PKmethod (Table
2). The opposite was true for the adjusted power of QTL
detection (Figure 4). These findings suggested that the
Ky 35 method, which is based on the optimum Ky matrix,
performed slightly better than the QK and PK methods.

Furthermore, the Kjs; method avoids the previously
described shortcomings of association-mapping methods
that are based on the assignment of individuals to
subpopulations. By contrast, the MSD of methods
0Ky 70 and PK; 7¢ is considerably lower than that of the
Ky 35 method, whereas higher values for the adjusted
power of QTL detection were observed for the former.
Therefore, the QK 7o and PK; 7o methods were the most
appropriate methods for association mapping in the
examined data set.

Kinrer approach: LyncH (1988) and MELCHINGER el al.
(1991) proposed to estimate 7as the average proportion
of marker loci with shared variants between two sets of
genotypes: (i) the entries and (ii) genotypes that are
unrelated by pedigree to the entries. The T value
calculated in the current study on the basis of five wheat
cultivars, which are unrelated by pedigree to the 303
entries, was 0.30. This value is in good accordance with
the T value of 0.35 estimated on the basis of the MSD
profile for the Kymethod, suggesting that this approach
might be used in studies on genetic diversity where no
phenotypic data are available. The MSD for K; 35, how-
ever, was lower than that of K, . Furthermore, the
optimum 7 for the QKrand PK; methods was consid-
erably higher than that estimated on the basis of
genotypes unrelated by pedigree. These observations
indicated that in association-mapping studies and espe-
cially in studies requiring fixed subpopulation effects,
estimation of 7'based on MSD or likelihood profiles are
more promising than estimation based on genotypes
unrelated by pedigree alone.

Comparison of one- and two-stage association-
mapping approaches: In all types of genetic mapping
experiments, the one-step approach, in which the phe-
notypic and genotypic data analysis is performed in one
step, is fully efficient (CuLLIs et al. 1998). Consequently,
Pvalues calculated for the marker loci under consider-
ation on the basis of such a statistical model are the
reference values (PiepHO and PiLLeN 2004). To our
knowledge, however, only two-stage association-mapping
approaches were applied in all earlier association-
mapping studies with plants, i.e., entry means or adjusted
entry means were calculated in the first step and
then used for association mapping in the second step.
Therefore, we compared one- and two-stage association-
mapping approaches.

The lowest MSD values among the one-stage associa-
tion-mapping approaches were observed for the QK 7o,
PKy 70, K70, and Kj 35 methods, which were also the
most appropriate methods for two-step association
mapping (Table 2). For these methods, the MSD of
the one-stage approaches was lower than that for the
corresponding two-stage association approaches, indi-
cating that in our data set the former were more appro-
priate for association mapping than the latter, although
the differences were rather small. Furthermore, for the
association-mapping methods based on K; matrices,
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high correlation coefficients between Pvalues calculated
for all marker loci on the basis of two-stage association-
mapping approaches and the corresponding one-stage
association approaches were found. These observations
suggest that our data set could be analyzed by two-step
association-mapping methods, using K;without increas-
ing the empirical type I error rate too much in compar-
ison to the corresponding one-step approaches.

Conclusions: The results of our study indicate that
the ANOVA approach is inappropriate for association
mapping in the examined germplasm set. Furthermore,
our observations suggest that the QK method is appro-
priate for association mapping not only in allogamous
species such as humans and maize (YU et al. 2006), but
also in the autogamous species wheat, when the exam-
ined data set is similar in size compared to that of our
study. Nevertheless, we recommend replacing the K
matrix of the QK and PK approaches by a Ky matrix,
which is based on a REML estimate of the probability
that two inbreds carry alleles at the same locus that are
identical in state but not identical by descent and, thus,
increases (i) the adherence to the nominal a-level as
well as (ii) the adjusted power of QTL detection. Finally,
we showed that our data set might be analyzed using the
newly proposed two-step association-mapping method
without increasing the empirical type I error rate too
much in comparison to the corresponding one-step
approaches.
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