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Abstract

Genotyping by sequencing (GBS) is a next generation sequencing based method that takes advantage of reduced
representation to enable high throughput genotyping of large numbers of individuals at a large number of SNP markers.
The relatively straightforward, robust, and cost-effective GBS protocol is currently being applied in numerous species by a
large number of researchers. Herein we describe a bioinformatics pipeline, TASSEL-GBS, designed for the efficient processing of
raw GBS sequence data into SNP genotypes. The TASSEL-GBS pipeline successfully fulfills the following key design criteria: (1)
Ability to run on the modest computing resources that are typically available to small breeding or ecological research
programs, including desktop or laptop machines with only 8–16 GB of RAM, (2) Scalability from small to extremely large
studies, where hundreds of thousands or even millions of SNPs can be scored in up to 100,000 individuals (e.g., for large
breeding programs or genetic surveys), and (3) Applicability in an accelerated breeding context, requiring rapid turnover
from tissue collection to genotypes. Although a reference genome is required, the pipeline can also be run with an
unfinished ‘‘pseudo-reference’’ consisting of numerous contigs. We describe the TASSEL-GBS pipeline in detail and benchmark
it based upon a large scale, species wide analysis in maize (Zea mays), where the average error rate was reduced to 0.0042
through application of population genetic-based SNP filters. Overall, the GBS assay and the TASSEL-GBS pipeline provide robust
tools for studying genomic diversity.
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Introduction

The advent of next generation sequencing has elicited a

revolution in biology buoyed by an advancing tidal wave of raw

sequence data[1–4]. By combining the power of next generation

sequencing with reduced representation[5], which focuses se-

quencing resources on the ends of restriction fragments, it is now

possible to quickly genotype unprecedented numbers of samples

even in large genome species[6–8]. Several low cost, high

throughput methods that combine next generation sequencing

with reduced-representation have been developed (e.g., [9–19]).

Because of its relative simplicity and robustness, the genotyping by

sequencing (GBS) method of Elshire et al. [12] or close derivatives

thereof have already been applied in numerous species by many

researchers (e.g., [7,17,20–31]). For the first time, generation of

copious quantities of genotypic data for genetic experiments is no

longer a bottleneck. Instead, the new bottleneck is the efficient

bioinformatics analysis of the vast and ever-expanding sea of data.

Opportunities to apply markers to breeding or conservation

biology are now often limited only by the availability of

appropriate bioinformatics tools.

To address this bioinformatics bottleneck, we implemented a

GBS analysis pipeline in the Java program TASSEL[32] (version

4) that is specifically tailored to the GBS protocols of Elshire et al.

[12] or Poland et al. [20]. However, the TASSEL-GBS pipeline is not

limited to the specific restriction enzymes utilized in those

protocols: it currently accepts 15 single restriction enzymes and

15 restriction enzyme pairs, and new enzymes are easily added.

Furthermore, the TASSEL-GBS pipeline should work on nearly any

restriction enzyme and barcoding approach (e.g., [33]), provided

that sequence reads commence with the barcode immediately

followed by the remnant of the restriction enzyme cut site

(Figure 1A). Compared to other available pipelines for similar

purposes [16,25,34–38] the TASSEL-GBS pipeline is specifically

designed to efficiently handle large quantities of data from large

numbers of samples: to date, we have analyzed more than 45,000

maize samples. The TASSEL-GBS pipeline was designed for species

with a reference genome; however, it is possible to use incomplete

genome assemblies consisting of numerous contigs as a pseudo-

reference. For species without a reference genome, an alternative

approach, appropriate for small to medium scale studies, has

already been implemented in TASSEL [22].

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e90346

Citation: Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, et al. (2014) TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline.
PLoS ONE 9(2): e90346. doi:10.1371/journal.pone.0090346

www.nsf.gov


Figure 1. Schematic representation of the TASSEL-GBS Discovery Pipeline. (A) Barcoded sequence reads are processed and collapsed into a set
of unique sequence tags, with one TagCounts file produced per input FASTQ file. The separate TagCounts files are then merged to form a ‘‘master’’
TagCounts file, which retains only those tags present at or above an experiment-wide minimum count. This master tag list is then aligned to the
reference genome and a TagsOnPhysicalMap (TOPM) file is generated, containing the genomic position of each tag with a unique, best alignment. (B)
The barcode information in the original FASTQ files is then used to tally the number of times each tag in the master tag list is observed in each
sample (‘‘taxon’’) and these counts are stored in a TagsByTaxa (TBT) file. (C) The information recorded in the TOPM and TBT is then used to discover
SNPs at each ‘‘TagLocus’’ (set of tags with the same genomic position) and filter the SNPs based upon the proportion of taxa covered by the
TagLocus, minor allele frequency, and inbreeding coefficient (FIT). For each retained SNP, the allele represented by each tag in the corresponding
TagLocus is recorded in the TOPM file, along with its relative position in the locus. The end product of the Discovery Pipeline is a ‘‘production-ready’’
TOPM that can then be used by the Production Pipeline to call SNPs.
doi:10.1371/journal.pone.0090346.g001
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Herein, we describe the TASSEL-GBS pipeline in detail, as

implemented in TASSEL 4, and we benchmark the pipeline based

upon a large-scale, species-wide analysis of maize (Zea mays). There

were three primary motivations behind the development of this

software: (1) Support the use of GBS in high-throughput,

accelerated plant breeding, (2) Accommodate the high genomic

diversity that is frequently encountered in species critical to

agriculture and conservation, and (3) Provide an analysis platform

that can be run in many contexts and with modest computational

resources, such as those typically available in the developing world.

Terminology

A read is a single sequence in the FASTQ output file
generated by the GBS assay

A good, barcoded read is a sequence read with a perfect

match to one of the barcodes provided in a barcode key file and

with no N’s in the sequence following the barcode up to the trim

length. Under the current implementation, reads are trimmed to

64 bp (not including the barcode).

A tag refers to a unique sequence (excluding the barcode) up to

a specified length (currently 64 bp) from one or more ‘‘good,

barcoded reads’’. A given tag is typically observed in numerous

good, barcoded reads of identical sequence (up to the trim length).

For our purposes, a taxon refers to a nameable entity from

which one or more DNA samples can be taken.

Design Considerations

Separation of SNP discovery and production SNP calling
Genomics-assisted, accelerated plant breeding usually consists of

two separate phases of analysis: a survey of genetic diversity within

a species or large breeding program to discover useful markers,

followed by usage of these markers to rapidly advance generations.

During the advancement cycle, time is of the essence, as thousands

of samples need to be processed as quickly as possible so that

decisions can be made for the next breeding cycle. The TASSEL-GBS

software, by its division into Discovery (Figure 1) and Production

pipelines (Figure 2), mirrors the two phases of accelerated plant

breeding.

The aim of the Discovery Pipeline (Figure 1) is to use the

cumulative sequence data from all available samples run to date in

a species (or breeding population) to discover SNPs. These SNPs

are stored in a ‘‘TagsOnPhysicalMap’’ (TOPM) data structure,

containing all of the potentially useful, unique, sequence tags, the

genomic positions of the subset of the tags with unique best

alignment positions, and the alleles that each useful tag represents

for each discovered SNP. The ‘‘production-ready’’ TOPM

(populated with variants for each useful tag) can then be in used

in the single-step Production Pipeline to quickly produce

genotypes, by determining which useful tags are present in each

sample. A production-ready TOPM will be applicable to a

breeding population as long as the genetic diversity present in the

founders of the breeding population is well represented in the

individuals that comprised the corresponding Discovery Build.

Our general approach is to periodically perform a comprehen-

sive ‘‘Discovery Build’’ including all samples run to date in our

study species. Performing a Discovery Build on a large number of

samples is a multistep process that, depending on the number of

samples, can require considerable computing resources (or time).

For example, the most recent Discovery Build that we performed

in maize (AllZeaGBSv2.6), comprising 31,978 samples (plus 758

blank negative controls, where TE buffer was substituted in place

of a DNA sample), took 495 CPU-hours on 64 core Linux

machine with 512GB of RAM (where each core was a 1.4 GHz

AMD Opteron Processor 6272), plus additional time for staging of

all of the input FASTQ files, etc. The Production Pipeline, in

contrast, provides an avenue by which genotypes for the set of

SNPs discovered in the most recent Discovery Build can be quickly

generated for new samples. Running the Production Pipeline on a

single FASTQ file containing sequence reads from 95 or 383

samples (plus a blank negative control) requires approximately 1

CPU-hour on a MacBook Pro with a 2.6 GHz Intel Core i7

processor and 16GB of RAM running OS X.

Favoring calling a large number of SNPs versus depth per
SNP

In a GBS assay, the tradeoff, for a given genome size, between

number of SNPs genotyped and the depth of coverage at each

SNP is controlled by the level of multiplexing and the choice of

restriction enzyme(s) [12,20]. One of our primary motivations for

performing GBS (in maize and other organisms) is to enable

GWAS, which requires a high density of markers, so that each

causative polymorphism stands a reasonable chance of being in

LD with one or more markers [39]. Hence, we favor increasing the

number of markers at the expense of depth and thus designed the

TASSEL-GBS pipeline with low coverage data in mind. The resultant

missing data and under-calling of heterozygotes can be compen-

sated for by redundant coverage of haplotypes at high marker

density, facilitating imputation.

The likelihood of success of this imputation-based strategy

depends on the number and length of homozygous, identical by

descent (IBD) segments present in the study population. This, in

turn, depends on the demographic history of the population.

Imputation is least challenging in biparental populations consisting

of RILs [40]. Imputation can also be relatively straightforward in a

set of homozygous inbred individuals descending from a limited

number of founders (e.g., modern maize lines; [24]). Even in

outcrossing species, extensive homozygous IBD stretches can be

present if a population bottleneck of sufficient severity occurred at

some point in the demographic history of the study population

Figure 2. Relationship between the TASSEL-GBS Discovery and
Production pipelines. The Discovery Pipeline is run periodically on all
FASTQ files generated to date in a species, and the ascertained and
filtered SNPs are stored in a ‘‘production-ready’’ TOPM. The Production
pipeline utilizes this production-ready TOPM to quickly call SNPs either
for the original samples in the Discovery Build, or for subsequent, post-
Discovery samples.
doi:10.1371/journal.pone.0090346.g002
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[41]. Such bottlenecks are common in outcrossing crop species,

associated with domestication (e.g., [42]), modern improvement

(e.g., [43]), or the development of a breeding population [44]. For

unrelated (or distantly related) individuals (either inbred or

outcrossed), large sample sizes improve the prospect of successful

imputation: the more individuals genotyped, the more likely a

given haplotype will be present in multiple individuals in

homozygous form. Marker density and depth of coverage per

marker need only be high enough to permit recognition of these

homozygous IBD segments.

The TASSEL-GBS pipeline is thus optimized for low sequencing

depth (0.5 to 36) over a large number of markers in a large sample

of individuals. However, it is flexible enough for the analysis of

higher coverage data either from a small genome species, or from

a large genome species where a lower level of multiplexing,

replicate runs of the same library preps, and/or a less frequently

cutting restriction enzyme (or enzyme combination) are used.

Capacity for large numbers of markers and samples
Our analysis strategy favoring large numbers of markers scored

at low depth in a large sample of individuals requires the TASSEL-

GBS pipeline to be able to handle very large data structures

(Table 1). The largest data structure is the ‘‘TagsByTaxa’’ (TBT)

object, which records the observed depth in each individual for

each potentially useful sequence tag (where ‘‘taxa’’ in ‘‘TagsBy-

Taxa’’ refers to an individual sample from a particular GBS

library prep). Our most recent Discovery Build in maize

(AllZeaGBSv2.6) comprised 97.5 million potentially useful tags

from 31,978 samples (plus 758 blank negative controls), with the

depth for each tag in each sample recorded as a single byte (prior

to compression). In order to efficiently store and retrieve data from

a matrix of this size (3.2 TB of uncompressed, raw data), we used

the HDF5 storage format (http://www.hdfgroup.org). We also

implemented a rapid and efficient run length compression

algorithm to further decrease the storage size. At low depth and

with high genetic diversity (numerous sequence tags per locus), the

TBT is a sparse data matrix consisting mostly of zeros; our run

length compression algorithm takes advantage of this. The

sequence tags themselves are stored in a binary format requiring

only 16 bytes to hold 64 bases (2 bits per base), prior to

compression. Thus, 64 base tags can be conveniently held in two

‘‘longs’’ in Java. The 64 base upper limit on tag lengths in the

current implementation of TASSEL-GBS will be lifted in the near

future, which will be helpful for study organisms with limited

diversity.

Capability to run on modest computing infrastructure
GBS provides an unprecedented opportunity for genomic

markers to be used by researchers working in numerous species,

including researchers in the developing world. Many of these

potential users do not have access to big memory computers or

large clusters. The TASSEL-GBS Discovery and Production pipelines

can be run on a Linux, Mac or Windows computer with 8–16 GB

of RAM. The main demand with respect to the amount of RAM

required is the number good, barcoded reads in a typical FASTQ

file produced from GBS, which currently ranges from 200–300

million. The small memory footprint required by the TASSEL-GBS

pipeline, in relation to its high capacity in terms of number of

markers and individual samples, renders it useful to a broad array

of users without access to sophisticated computing infrastructure, a

target user group which may include breeders carrying out

genomic selection experiments.

Avoiding redundant alignment of identical reads
Genotyping approaches based on whole genome, rather than

reduced-representation, sequencing typically align all or most of

the reads produced to the reference genome prior to calling SNPs

(e.g., [36]). In contrast, the TASSEL-GBS pipeline first collapses all of

the reads into a master tag list containing all of the sequence tags

present at or above a user-specified minimum count, tallied across

all of the samples in the Discovery Build (Figure 1A). Each tag in

this master tag list is then aligned to the reference genome. This

strategy dramatically reduces the computation time devoted to

alignment, and permits the use of more computationally expensive

alignment algorithms. As the master tag list for our most recent

maize Discovery Build (AllZeaGBSv2.6) consisted of 97.5 million

tags, distilled from more than 46.8 billion sequence reads, a 392-

fold reduction in computational time devoted to alignment was

achieved in our case.

Favoring allelic redundancy over quality scores
Quality scores produced by the Illumina base caller are strongly

negatively correlated with position in the read. In most whole

genome sequencing approaches the position of a particular SNP in

different reads is essentially random. In contrast, a GBS SNP has a

consistent position in each read, as all of the GBS tags from a

particular genomic location (a ‘‘TagLocus’’) that are used to

discover and call SNPs originate from the same restriction enzyme

cut site and have the same strand orientation. Consequently, the

more distal SNPs in a GBS tag tend to have lower quality scores. If

quality scores were used to filter GBS reads, these more distal

SNPs might end up with lower depth of coverage. Furthermore,

the quality scores frequently are not indicative of true quality

[45,46]. Hence, rather than using quality scores to filter out bad

reads, the TASSEL-GBS pipeline instead relies on the number of

times a given tag has been observed as an indicator of sequence

quality. GBS sequence tags that occur in a minimum, user-

specified, number of reads across all of the samples in a Discovery

Build are deemed as potentially useful and are kept for further

processing (alignment to the genome and SNP calling). Illumina

Table 1. Size of the key data structures used by the TASSEL-GBS pipeline for a recent maize ‘‘Discovery Build’’ (AllZeaGBSv2.6).

Data Structure Data Points Compressed Size Uncompressed size

Sequencing Files 4,679 Gnt1 3.9 TB 11.6 TB

Tags by Taxa (TBT) 3.2 trillion2 82.0 GB 3,198 GB

Tags on Physical Map (TOPM) 10.2 billion3 6.44 GB 14.0 GB

1Giganucleotides
2Read depths for 97,502,532 tags across 32,736 taxa (including 758 blank negative controls.
3105 data points per tag (with each base counted as one data point) times 97,502,532 tags.
doi:10.1371/journal.pone.0090346.t001
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quality scores are ignored, and therefore do not need to be tracked

throughout the pipeline.

Population genetic-based filtering of putative SNPs
Putative SNPs from GBS may be of low quality for multiple

reasons. The sequencing error rate for a SNP may be high because

of its distance from the read start and/or its immediate sequence

context [47,48]. Alternatively, paralogous sequence tags from

different loci may be mistakenly aligned to a single TagLocus,

resulting in spurious SNPs. To detect and filter out error-prone

SNPs, the TASSEL-GBS pipeline relies on population-genetic

parameters such as the minor allele frequency (MAF) and, in

particular, the inbreeding coefficient (or ‘‘index of panmixia’’), FIT.

Filtering based upon minimum MAF can remove spurious SNPs

arising solely from sequencing error. Artifactual SNPs originating

from paralogous tags will tend to be excessively heterozygous and

can thus be distinguished on the basis of low FIT.

These population-genetic filters are most powerful if a

substantial proportion of the samples consist of inbred lines.

Among inbred samples, both error-prone SNPs and spurious SNPs

originating from paralogous tags will appear to be excessively

heterozygous. The Discovery SNP caller in the TASSEL-GBS pipeline

allows the user to specify which samples are highly inbred, and

uses this subset of inbreds to calculate FIT and apply the minimum

FIT filter. Additional, related, filters can also be applied enforcing a

minimum ‘‘inbred coverage’’ (proportion of the inbred samples to

be non-missing at the SNP) and maximum ‘‘inbred heterozygosity

score’’ ( = nInbredHets/[nInbredsGT1ReadHomoMin + nInbredHets +
0.5], where nInbredHets is the number of inbred taxa that are scored

as heterozygous for the SNP, and nInbredsGT1ReadHomoMin is the

number of inbred taxa with a read depth .1 for the SNP that are

scored as minor allele homozygotes).

Implementation

Discovery Pipeline
The Discovery Pipeline consists of multiple steps, with each step

(with the exception of alignment to the reference genome) being

carried out by a TASSEL ‘‘plugin’’ that can be run from

the TASSEL 4 Standalone command line interface. Detailed

documentation on the function and usage of each individual

plugin is available at www.maizegenetics.net/tassel/docs/

TasselPipelineGBS.pdf. Rather than describe each individual

plugin, here we describe the main functions of the pipeline

(Figure 1) and their key features.

In order to have maximal power to discover and filter SNPs, we

advocate running the Discovery Pipeline (i.e., performing a

‘‘Discovery Build’’) at the species-wide level, with all samples

sequenced to date, across multiple FASTQ files. Each FASTQ file

contains GBS data from multiple samples distinguished by DNA

barcodes at the beginning of each read [12]. We currently perform

GBS at 384 plex (3072 samples per flowcell), and run each GBS

library prep on one or more flowcell lanes depending on the

desired sequencing depth.

Collapsing reads into a master tag list. The TASSEL-GBS

Discovery Pipeline first reads through each of the available

FASTQ files and generates one output ‘‘TagCount’’ file per input

FASTQ file (Figure 1A). Each output, binary TagCount file

contains a sorted list of all the unique sequence tags observed in

the corresponding FASTQ file, the length of each tag in bases, and

the number of times each tag was observed. This list can be used

as a key-value map where the tag sequence and length together

serve as the key and the corresponding tag count serves as the

value. Each nucleotide is encoded in two bits allowing tag

sequences to be stored in Java longs (64 bits, or 32 bases per long).

Degenerate bases or N’s are not permitted and quality scores are

not retained. Potentially chimeric sequences are eliminated by

trimming the sequence at the corresponding restriction enzyme

site, if present.

After this initial pass through all of the available FASTQ files,

the individual TagCounts files are merged into a single, master

TagCount file containing a list of all tags of interest for a species.

Only tags occurring at or above a (user-specified) minimum

number of reads across all of the FASTQ files in the experiment

are retained in the output master tag list. The more times a

particular tag has been observed, the less likely it contains a

sequencing error. The minimum tag count controls the tradeoff

between the amount of sequencing errors admitted into the

analysis versus the minimum allele frequency of interest. We do

not expect to eliminate all sequencing errors at this step. We are

usually able to filter out or correct most of them in subsequent

steps of the pipeline, or in further, downstream processing

customized to the biology of the study population(s). Furthermore,

tags containing one or more sequencing errors can still be useful to

score SNPs at other, non-error positions.

Alignment of tags to the reference genome. Alignment of

each tag of interest in the master tag list to the reference genome is

carried out with third party software. To facilitate this, the master

tag list file is converted from TagCount format into FASTQ

format (with fake, uniformly high quality scores). Currently, SAM

format [36] output alignment files produced by the free software

programs Bowtie2 [49] or BWA [36] can be read by the TASSEL-

GBS pipeline and converted into a ‘‘TagsOnPhysicalMap’’

(TOPM) file that can be used for SNP calling.

The TOPM contains all of the tags present in the master

TagCount file and genomic positions for the subset of tags that

align to a unique best position in the genome. Retention of all of

the master tags in the TOPM, even those without unique best

genomic positions, affords future incorporation of additional

information regarding the positions of unplaced tags, either from

alternative aligners or from genetic mapping evidence. The

TOPM is sorted by tag sequence and functions as a key-value

map where a tag sequence can be used as a key to retrieve its

corresponding physical position. It is also possible to program-

matically traverse the tags within a TOPM in their physical

position order through the use of an in-memory, primitive

treemap. At the SNP calling step of the Discovery Pipeline (see

below), the alleles represented by each useful tag at each useful

SNP (‘‘variants’’) are added to the TOPM. Three file formats of

the TOPM are supported: text, binary, and HDF5.

Determining the distribution of tags across individual

samples. With a TOPM file available, the next ingredient

needed to discover and call SNPs is a matrix that records the

number of times each tag in the master tag list was observed in

each DNA sample, which we refer to as a TagsByTaxa (TBT) file

(Figure 1B). In order to maximize the capacity of our pipeline, we

currently store the TBT in HDF5 format (http://www.hdfgroup.

org). The HDF5 format facilitates extremely fast read and write

access to large data sets. To construct a TBT, the DNA sample of

origin of each good, barcoded read in the set of input FASTQ files

is determined based upon its barcode. If a good, barcoded read

matches one of the tags in the master tag list, its depth in the

appropriate taxon is incremented in the output TBT, up to a

maximum depth of 127. Since the matrix is often extremely sparse,

a custom run length encoding compression algorithm was

implemented that provides a high level of compression, with

minimal reduction in access speed.

TASSEL-GBS Analysis Pipeline
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SNP discovery and initial filtering. SNP discovery

(Figure 1C) is performed for each set of tags that align to the

exact same starting genomic position and strand, where the

starting genomic position of a tag is defined by the cut site remnant

at the beginning of the tag. Such tags, originating from the same

restriction enzyme cut site and with the same orientation (but not

necessarily of the same length), collectively comprise a ‘‘TagLo-

cus’’. To call SNPs and ensure that indels are handled consistently,

a de novo multiple sequence alignment of all the tags in each

TagLocus is performed using the BioJava 3.0 API [50], which

implements the CLUSTAL W algorithm [51]. For each SNP in

the resulting ‘‘TagLocusAlignment’’, the allele represented by

each tag is determined and the TBT file is consulted to tally the

observed depths of each allele in each taxon. The genotype of the

SNP in each taxon is then determined either by a binomial

likelihood ratio method of quantitative SNP calling (the default; for

details see Supplementary Text S1) or, optionally, following the

method of Hohenlohe et al. [52].

After genotypes are obtained for a potential SNP, initial filtering

is then performed based upon user settings for minimum minor

allele frequency, and for a minimum coefficient of panmixia, or

inbreeding relative to the entire population, FIT, (where FIT = 1 –

Ho/He, Ho = observed heterozygosity, He = expected heterozy-

gosity = 2q(1-q), and q = minor allele frequency). Error-prone

SNPs and spurious SNPs from paralogy often appear excessively

heterozygous, with lower FIT than expected. If the user supplies a

‘‘pedigree file’’ that indicates the expected inbreeding coefficient

(F) of each taxon, then only inbred taxa, with an expected

inbreeding coefficient greater than or equal to the user-specified

minimum coefficient of panmixia (minF parameter), are used in the

calculation of FIT. Inbred samples, available in many crop species

and model organisms, can greatly add to the power of this filter. If

enough inbred samples are available, then, additional filtering of

SNPs can then be optionally performed enforcing a minimum

‘‘inbred coverage’’ (proportion of the inbred samples to be non-

missing at the SNP) and a maximum ‘‘inbred heterozygosity

score’’ (defined above).

To illustrate the effectiveness of these population genetic-based

SNP filters, as applied in our most recent maize Discovery Build

(AllZeaGBSv2.6, with 31,978 samples), we focused on the subset

of 5,254 samples from the maize Nested Association Mapping

(NAM) population [53]. The NAM population is a series of 25

biparental, F2-derived RIL families all with a common female

parent, the inbred line B73. Error-prone SNPs can be identified in

a biparental family through their tendency, when they are in fact

not segregating, to appear to be weakly polymorphic, but with

segregation ratios significantly deviating from the 1:1 expectation.

In contrast, non-segregating SNPs in a given family that display no

spurious polymorphism are free of genotypic error in that family.

The availability of the 25 biparental NAM families provides

tremendous power to detect error-prone SNPs, and thus to

examine the effectiveness of our filters.

We used the 5,254 NAM RIL samples to estimate error rates for

three alternative sets of chromosome 10 SNPs discovered in the

full set of 31,978 maize samples comprising our AllZeaGBSv2.6

Discovery Build. The three sets of chromosome 10 SNPs were

obtained after application of three different filtering regimes: (1) no

filters other than MAF . = 0.001, (2) a minimal filter only for

MAF . = 0.01, and (3) our ‘‘standard’’ maize Discovery Build

filters of MAF . = 0.001, minimum FIT in inbred samples of 0.8,

inbred coverage .0.15, and inbred heterozygosity score ,0.21.

The SNPs were discovered and filtered based upon all 31,978

maize samples (including the NAM RILs) and their allele

frequencies were then separately calculated in each of the 25

NAM families. To minimize sampling error, allele frequency was

only estimated for a particular SNP-NAM family combination if at

least 19 RILs in that family had non-missing genotypes for the

SNP (n . = 19). Thus, by ‘‘SNP-NAM family combination’’ we

mean a particular SNP (e.g., ‘‘S10_2918’’) in a particular NAM

family (e.g., ‘‘B73 6 B97’’) that has at least 19 non-missing

genotypes, regardless of whether it is polymorphic or not within

that family. Hence, for each SNP, allele frequencies were

calculated in 25 or fewer families, depending on the amount of

missing data in each family. NAM family-specific minor allele calls

for a SNP were classified as errors if the family-specific MAF was

greater than zero but less than 0.25, and the SNP significantly

deviated from 1:1 segregation in that family at p,0.001 (binomial

test). The overall error rate for a SNP was then estimated as the

total number of these error calls divided by the total number of

calls for that SNP in NAM families with n . = 19 where the SNP

significantly deviated from 1:1 segregation at p,0.001 (including

the monomorphic SNPs). A pictorial explanation of this method of

estimating error rates, using a single NAM family for illustrative

purposes, is provided in Supplementary Text S2.

Compared to non-filtered SNPs (Figures 3A and 3B), applica-

tion of our ‘‘standard’’ maize Discovery Build filters (MAF . =

0.001, minimum FIT in inbred samples of 0.8, inbred coverage

.0.15, inbred heterozygosity score ,0.21) (Figures 3E and 3F)

greatly increased the proportion of SNP-NAM family combina-

tions displaying either appropriate 1:1 segregation (Figure 3F), or

no polymorphism at all (Figure 3E). In contrast, a minimal filter

based only on MAF (MAF . = 0.01) (Figures 3C and 3D) was far

less effective at removing error-prone SNPs than our standard

filters. Furthermore, our standard filters clearly shifted the

distribution of error rates (estimated from the NAM samples)

toward zero (Figure 4) and reduced the mean error rate (Table 2)

relative to either no filtering (other than MAF . = 0.001) or

minimal filtering (only for MAF .0.01). Extremely low estimates

of mean and median error rates after application of our standard

filters (0.0042 and zero respectively; Table 2) indicate that, for the

most part, highly reliable SNP genotypes are produced by the

GBS assay and the TASSEL-GBS pipeline, at least for inbred samples

(where under-calling of heterozygotes due to low coverage is not

an issue).

Error prone SNPs that are not removed by our standard filters

(e.g., polymorphic SNPs with family specific MAFs ,0.25 in

Figure 3F) can be easily removed from biparental RIL families by

filtering for appropriate allele frequencies and/or based on their

relatively low levels of linkage disequilibrium (LD) with neighbor-

ing SNPs. In addition, error-prone SNPs identified in biparental

families can be excluded from analyses of the remaining, non-

biparental samples in a Discovery Build. If biparental populations

are not available in your study species, it should be possible to use

half-sib (e.g., open pollinated) families, or any population having a

prior expected allele frequency range for polymorphic markers, to

filter out error-prone SNPs. Alternatively, recently bottlenecked

populations with high levels of extended LD can be used to filter

out error-prone SNPs, which should display relatively low levels of

LD with their neighboring SNPs.

After SNP calling and filtering, the input TOPM is updated

with variants, and this ‘‘production-ready’’ TOPM is then saved to

a new file (Figure 1C). For each SNP that passed the filtering step,

the allele that is represented by each tag in the corresponding

TagLocus is recorded in the ‘‘production-ready’’ TOPM, as well

as the relative position of the SNP with respect to the genomic

position of the TagLocus. The production TOPM produced by

our AllZeaGBSv2.6 Discovery Build contained 955,690 useful

SNPs.

TASSEL-GBS Analysis Pipeline
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Production Pipeline
In contrast to the multiple-step Discovery Pipeline, the

Production Pipeline consists of a single step, utilizing the

production-ready TOPM generated by the Discovery Pipeline to

produce genotypes directly from input FASTQ files (Figure 2).

The Production Pipeline determines the taxon of origin of each

good, barcoded sequence read in each input FASTQ file and then

checks if the read matches one of the useful tags in the production-

ready TOPM. In this manner, allelic depths for each useful SNP in

the TOPM are recorded for each taxon, allowing quantitative

SNP calling to be performed, again either by our own binomial

likelihood ratio method (for details see Supplementary Text S1) or,

optionally, according to the method of Hohenlohe et al. [52]. If

the GBS library preps for some samples have been run in replicate

on multiple flow cell lanes (to increase depth), the corresponding

allelic depth information is tallied across the replicates prior to

SNP calling. Genotype files are produced in HapMap format as

well as in or our own custom HDF5 format (which also records

allelic depth). The ability to convert from this custom HDF5

format into VCF format [54], which also retains allelic depth, will

be added to the TASSEL GUI in the near future.

Downstream Processing
Further processing of the genotype files, such as sub-setting out

specific taxa or genomic regions of interest, filtering SNPs or taxa

based upon coverage, or filtering of SNPs based on minor allele

frequency, can be performed either with the TASSEL 4 GUI or

the TASSEL 4 Standalone command line interface (the ability to

filter for SNPs that are in LD with their neighbors will be added

soon). Depending on the genome size, the exact molecular

protocol and restriction enzyme used, and the sequence depth

obtained, missing data can be common and actual heterozygotes

Figure 3. Within NAM family allele frequency distributions of chromosome 10 SNPs after different levels of filtering. Allele
frequencies were calculated in each of the 25 Nested Association Mapping (NAM) families (collectively comprising 5,254 RILs) after application of the
filters to the entire set of 31,978 maize samples in the AllZeaGBSv2.6 build. Allele frequencies were only estimated in a NAM family if at least 19 RILs
had non-missing genotypes. Each histogram shows the allele frequency distribution for all the SNP-NAM family combinations with n . = 19. (A, B) No
filter other than minimum MAF of 0.001. (C, D) A minimal filter only for MAF . = 0.01. (E, F) ‘‘Standard’’ maize build filters of MAF . = 0.001,
minimum FIT in inbred samples of 0.8, inbred coverage .0.15, and inbred heterozygosity score ,0.21. (A, C, E) All SNP-family combinations: the error-
free, monomorphic SNP-family combinations dwarf the segregating SNPs in all three cases. (B, D, F) Polymorphic SNP-family combinations only:
omitting the monomorphic SNP-family combinations permits visualization of the remaining allele frequency distribution.
doi:10.1371/journal.pone.0090346.g003
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can be substantially under-called as homozygotes. Hence,

imputation of missing data (and, possibly, phasing of the final

genotypes) is usually desirable. Since the optimal imputation

approach depends greatly upon the biology of the species and the

experimental design, this topic is beyond the scope of this paper.

Numerous, general purpose imputation tools are already available

[55]. Custom imputation approaches that we are developing for

our maize experimental populations will be the subject of future

publications.

Hardware Needs and Installation
The TASSEL-GBS pipeline is part of the TASSEL package, which

is written in Java, so it can be run on Linux, Mac, or Windows

operating systems. A minimum of 8 GB of RAM is required (at

least 16 GB is recommended). Detailed installation instructions

are provided at www.maizegenetics.net/tassel as well as in the

TASSEL-GBS pipeline documentation (www.maizegenetics.net/

tassel/docs/TasselPipelineGBS.pdf). The source code is available

from sourceforge.net/p/tassel/code/ci/master/tree, JUnit tests at

sourceforge.net/p/tassel/maizegenetics4-test/ci/master/tree and

a relatively small test data set at www.maizegenetics.net/tassel/

GBSTestData.tar. The current version of TASSEL-GBS as described

herein is implemented in TASSEL V4.3.5. Although we generally

recommend using the latest version, users can revert to V4.3.5 or

other versions by following the instructions posted in the following

document www.maizegenetics.net/tassel/docs/UpdatingTasselS

tandaloneUsingGit.pdf, under the heading ‘‘To Update Packages

to Older Releases…’’. The TASSEL-GBS pipeline will soon be

available in TASSEL 5; major improvements to the pipeline (e.g.,

full VCF format support, allowing tag lengths greater than 64 bp,

storage of tag depths per individual up to 10,000 rather than the

current maximum of 127) will be implemented there.

Strengths and Weaknesses

Strengths
The strengths of GBS and the TASSEL-GBS pipeline are the large

number of markers potentially produced (depending on the

biology of the species and the choice of restriction enzymes), low

cost and minimal startup cost, and integration of SNP discovery

with SNP calling.

The potentially large number of markers available from GBS

makes GWAS feasible in study populations where linkage

disequilibrium (LD) extends far enough so that causative

polymorphisms stand a reasonable chance of being in LD with

one or more markers. Alternatively, the large number of markers

facilitates accurate projection of haplotypes from a set of more

densely genotyped reference haplotypes [56] derived from whole

genome sequencing (WGS) (e.g., [57,58]). This projection strategy

is especially effective if the WGS reference haplotypes are

representative of the founders of the study population [59].

Compared to alternative high-density marker technologies such

as SNP arrays, GBS is relatively inexpensive, particularly if low

coverage data suffices for the purpose of your study. Startup costs

for GBS are minimal, as startup involves only (1) testing that your

one of your candidate restriction enzymes (or enzyme pairs)

produces a suitable GBS library, and (2) optimization of the ratio

of sample DNA to the PCR adapters [12]. In contrast, startup for

Figure 4. Error rate distribution of chromosome 10 SNPs for different levels of filtering. Error rates in the AllZeaGBSv2.6 Discovery build
SNP calls were estimated using the NAM biparental families. NAM family-specific minor allele calls were defined as errors if the family-specific MAF
was greater than zero but less than 0.25, and the SNP significantly deviated from 1:1 segregation in that family at p,0.001.
doi:10.1371/journal.pone.0090346.g004

Table 2. Comparison of error rates for chromosome 10 SNPs
from the AllZeaGBSv2.6 build for different levels of filtering by
the Discovery SNP caller.

Filter1 nSNPs nSNPsTested2 avgErrorRate3
avg
nSegregating4

MAF . = 0.001 694,517 680,623 0.00681 12,899

MAF . = 0.01 149,480 136,296 0.02218 12,818

Standard5 78,627 78,506 0.00420 7,192

1Filters applied to the entire build (31,978 non-blank samples)
2Minimum sample size of 19 in at least one maize Nested Association Mapping
(NAM) family
3Average error rates estimated from 5,254 NAM RILs. Median error rates were
zero for all three filters.
4Average number of chromosome 10 SNPs with n . = 19 and MAF between
0.25 and 0.75 across the 25 NAM families.
5MAF . = 0.001, minimum FIT in inbred samples of 0.8, inbred coverage .0.15,
inbred heterozygosity score ,0.21.
doi:10.1371/journal.pone.0090346.t002
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a SNP array involves ascertainment of SNPs in a small discovery

panel and assay design for each individual SNP.

The common practice of using of a small panel of individuals to

discover SNPs for inclusion in a SNP array introduces an

ascertainment bias that can severely distort estimates of key

population genetic parameters gauging genetic diversity, sub-

population differentiation and relatedness among individuals [60–

62]. In contrast, the TASSEL-GBS Discovery pipeline integrates SNP

discovery with SNP calling, using all available samples to date, and

thus avoids the ascertainment bias that would arise from a small

discovery panel. This type of ascertainment bias will also be

minimal for new samples run through the Production Pipeline,

provided that their genetic diversity is well-represented among the

samples included in the Discovery Build. However, there might

still be some subtle biases in either pipeline, caused by factors such

as null alleles [63,64], alignment to the reference, and the use of

inbreds only (rather than the full set of samples) to filter SNPs for

FIT.

Weaknesses
The main weakness of the GBS assay, when conducted at low

coverage, is the amount of missing data. However, numerous

imputation approaches are currently available [55] and yet more

are currently in development, for a wide range of biological

scenarios. As discussed above, the most appropriate imputation

method and the probability of imputation success depends upon

the biology of the study population. For some purposes, such as

estimation of population allele frequencies [65], kinship, related-

ness, and genetic distance, phylogenetic reconstruction [22], or

germplasm quality control [24], imputation of missing data is

usually not necessary.

Conclusions

The TASSEL-GBS pipeline for identifying and calling SNPs from

next-generation, genotyping by sequencing data fulfills our design

criteria better than any existing pipeline. It has a capacity for very

large analyses involving tens of thousands of samples, yet can also

be run at smaller scales. The pipeline permits rapid processing of

the data, yet has a relatively modest memory footprint, allowing it

to be run on desktop or laptop computers. This increases its

usability by researchers in developing countries who may lack

access to sophisticated computing resources. The separation of

SNP discovery and genotyping into two phases reduces potential

ascertainment biases and, more importantly, makes the TASSEL-GBS

pipeline highly suitable for use in a genomics-assisted, accelerated

breeding context, where rapid turnaround times from tissue

collection to genotypes are essential. Furthermore, the high density

of markers potentially available from the GBS assay should enable

accurate genomic prediction over multiple generations.

Supporting Information

Text S1 Description of our binomial likelihood ratio
method of quantitative SNP calling.
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