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ABSTRACT Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the
genomic identity-by-state among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation
in maize height remains a formidable challenge. To address this challenge, we measured the plant height, ear height, flowering time,
and node counts of plants grown in >64,500 plots across 13 environments. These plots contained >7300 inbreds representing most
publically available maize inbreds in the United States and families of the maize Nested Association Mapping (NAM) panel. Joint-
linkage mapping of quantitative trait loci (QTL), fine mapping in near isogenic lines (NILs), genome-wide association studies (GWAS),
and genomic best linear unbiased prediction (GBLUP) were performed. The heritability of maize height was estimated to be >90%.
Mapping NAM family-nested QTL revealed the largest explained 2.1 = 0.9% of height variation. The effects of two tropical alleles at
this QTL were independently validated by fine mapping in NIL families. Several significant associations found by GWAS colocalized with
established height loci, including brassinosteroid-deficient dwarf1, dwarf plant1, and semi-dwarf2. GBLUP explained >80% of height
variation in the panels and outperformed bootstrap aggregation of family-nested QTL models in evaluations of prediction accuracy.
These results revealed maize height was under strong genetic control and had a highly polygenic genetic architecture. They also
showed that multiple models of genetic architecture differing in polygenicity and effect sizes can plausibly explain a population’s
variation in maize height, but they may vary in predictive efficacy.

EIGHT adaptations are essential to plant fitness and

agricultural performance. They are intrinsic to the evo-
lutionary history, standing diversity, and genetic architecture
of a population, and impact the velocity of its evolution and
response to breeders’ selection pressures. The height of
plants evolving in competitive environments is in part
a product of selection imposed on fitness by the effects of
light interception, carbon and nutrient capture, weed compe-
tition, and seed dispersal (Lin et al. 1995). In domesticated
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crops, breeding efforts facilitating agricultural industrialization
indirectly select height adaptations, maximizing yield under
monoculture. Height adaptations buffering yield against
drought and other environmental factors are also desirably
selected. This is illustrated in the yield gains and height reduc-
tions of wheat (Triticum spp.) and rice (Oryza sativa) in the
Green Revolution (Khush 2001). During selection for industrial
agriculture, height adaptations increase harvest uniformity, fa-
vorably partition carbon and nutrients between grain and non-
grain biomass, and enhance fertilizer, pesticide, and water use
efficiency (Khush 2001). In grasses like maize, wheat, and rice,
apical growth is terminated at reproductive maturity (Lin et al.
1995). This may establish genetic correlations among height
and flowering and constrain evolvability.

Due to its high heritability and the ease of its measurement,
plant height has been studied since Mendel’s foundational
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hybridization experiments (Mendel 1866). Plant height loci
have been cloned and resolved by molecular tagging of large-
effect alleles often induced by mutagenesis (Salas Fernandez
et al. 2009; Andorf et al. 2010). Over 40 maize genes at which
mutations have large effects on plant height have been identi-
fied (Multani et al. 2003). These are involved in hormone
synthesis, transport, and signaling (Wang and Li 2008).
Well-characterized maize height genes include: brachytic2,
influencing polar auxin transport (Multani et al. 2003); dwarf3,
mediating gibberellin synthesis (Winkler and Helentjaris 1995);
dwarf8 and dwarf9, regulating DELLA proteins of gibber-
ellin signal transduction pathways (Lawit et al. 2010); and
nana plantl, impacting brassinosteroid synthesis (Hartwig
etal 2011).

The large effects of these loci suggest they may not
commonly segregate in natural populations due to rapid loss
or fixation. Loss of large-effect alleles is especially likely as
a population approaches optimal fitness or agricultural
desirability, as predicted by the Fisher-Orr model (Orr
2005; Brown et al. 2011). Nevertheless, height mutations
may influence other traits, causing antagonistic pleiotropy
and resulting in the maintenance of such alleles. Polymor-
phism at these loci may also be maintained in some genomic
regions if selection is limited by linkage disequilibrium as
explained by Hill-Robertson interference (Hill and Robertson
1966) and the Fisher—Muller model (Fisher 1930; Muller
1932). In maize, breeders maintain inbred heterotic groups
with established general combining abilities but select indi-
viduals based upon specific hybrid performance. This practice
may allow segregation of large recessive effects. Admixture
of exotic germplasm and locally adapted subpopulations may
also allow persistent segregation of large-effect alleles due to
evolutionary capacitance (Masel 2005), wherein environ-
ments and epistatic alleles buffer large effects in adapted
populations but cease to do so in a new environment or when
new alleles become common in an admixed population.
Therefore, the proportion of variation explained by large
effects in admixed diversity panels is unknown. Details of
the joint distribution of genetic effect sizes, frequencies,
linkage equilibria, recombination rates, environmental and
genetic conditionalities (such as genotype-by-environment
interaction and epistasis), and pleiotropy will enhance our
understanding of phenotypic landscapes or response
surfaces implicit to crop evolution (Rice 2004; Messina
et al. 2011) and help to optimize selection practices for crop
improvement.

Maize is a model species with exceptional morphological
and molecular diversity. Millions of single nucleotide poly-
morphisms (SNPs) may segregate in a modestly sized pop-
ulation (Tian et al. 2011) and the annual cross-pollination
of maize rapidly decays their linkage disequilibrium (LD)
(Remington et al. 2001). Breeders have selected and recom-
bined this diversity for >7000 years and commercial hybrid
breeding has ensued for a century (Hamblin et al. 2007
Piperno et al. 2009; Wallace et al. 2013). The past decade
has seen exceptional genotyping advances. Molecular markers
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now regularly serve as proxies for heritable trait variation and
aid dissection of its segregation. Over 27 million variants have
been genotyped in 27 inbreds (Gore et al. 2009; Chia et al.
2012). These were parents of the maize Nested Association
Mapping (NAM) families (Chia et al. 2012) and the inter-
mated B73 X Mo17 family (IBM) (Lee et al. 2002). Parental
variants were imputed based on 1106 markers scored on
4892 recombinant inbred lines (RILs). Also, 2815 inbreds
from the US Department of Agriculture-Agricultural Research
Service (USDA-ARS) North Central Regional Plant Introduc-
tion Station (NCRPIS) were genotyped-by-sequencing to
identify 681,257 SNPs (Romay et al. 2013). These are the
most densely genotyped public maize populations (Chia
et al. 2012).

This study’s objectives were to explore the genetic archi-
tecture of maize height and related traits, validate several
allele estimates of the inferred architecture, and contrast
multiple models estimating genetic architecture in their abil-
ity to explain the natural height variation of observed lines
and predict the height of unobserved lines given their
genotypes. To achieve these objectives, maize plant height
(PHT), ear height (EHT), flowering time (days to anthesis,
DTA), and node count (NPH) were measured in the NAM
and IBM families and joint-linkage mapping of quantitative
trait loci (QTL) was performed. A genome-wide association
study (GWAS) was also executed across the NAM and IBM
families as well as within the NCRPIS diversity panel.
To validate allele estimates of a QTL on chromosome 9,
PHT was mapped in two families of near isogenic lines
(NILs) with introgressions of NAM parents (CML277 and
CML333) in a B73 background. Variants segregating in the
NAM and IBM families as well as the NCRPIS panel were
used to construct genomic identity-by-state (IBS) relation-
ship matrices for genomic best linear unbiased prediction
(GBLUP) (VanRaden 2008). GBLUP was performed and
compared to QTL models explaining PHT, EHT, DTA, and
NPH variation across, within, and between RIL families.
GBLUP was also performed within the NCRPIS diversity
panel.

Materials and Methods
Plant materials and environments

The NAM families were developed by the Maize Diversity
Project as previously described (McMullen et al. 2009; Hung
et al. 2012). The IBM family (Lee et al. 2002) was also
evaluated. RILs were measured in 10 environments, under
conventional fertilization, weed, and pest control. In 2006
and 2007, RILs were scored in Aurora, New York; Clayton,
North Carolina; Columbia, Missouri; and Urbana, Illinois. In
2008, RILs were scored in Aurora, NY. In 2009, they were
scored in Columbia, MO. In total, 4892 NAM and IBM RILs
were scored for height in >7 environments. This dataset
was used in linkage mapping, GWAS, and GBLUP.

In New York, RILs were planted at Muskgrave Research
Station (Honeoye silt-loam soil). In 2006, 2007, and 2008,



single row plots of 12 plants were grown for each RIL. In
2006, RILs were stratified by randomized family as pre-
viously described (Hung et al. 2012). In each family, incom-
plete blocks of 20 random RILs, B73, and the family’s
alternate parent were grown in an «-lattice. Plot order in
each block was randomized. In 2007 and 2008, a similar
approach was taken, but plots were stratified by maturity
group. In North Carolina during 2006 and 2007, RILs were
planted at the Central Crops Research Station (Cecil sandy-
loam soil) in single row plots of 8 plants after thinning. The
RILs were grown in a similar design to New York the same
years. In 2006, a second replicate of families corresponding
to CML247, CML277, Ki3, M162W, Mol7, and Tzi8 was
grown. In Missouri, RILs were planted at Bradford Research
Center (Mexico silt-loam soil) in 2006 and 2007. A single row
plot of 9 plants was grown for each RIL. Due to poor germi-
nation and drought, families corresponding to CML247,
CML322, IL14H, M162W, Mo18W, MS71, NC350, NC358,
and P39 were not scored in 2006, and in 2007, the IBM family
was not grown (Hung et al. 2012). In Missouri during 2009,
RILs were planted in single-row plots of 15 plants at Rollins
Bottoms Research Station (Haymond silt-loam soil). A similar
field design to New York and North Carolina was used.
In Mlinois during 2006 and 2007, RILs were grown at the
Crop Sciences Research and Education Center (Muscatine
silt-loam soil) in single row plots thinned to 15 plants. Plots
were arranged in a design similar to other environments
planted the same years.

After joint-linkage mapping, two NILs with a B73 back-
ground were used to validate the family-nested QTL explain-
ing the most variation in NAM. The NILs had introgressions
for two alleles on the long arm of chromosome 9 and were
obtained from the Syngenta Corporation. Introgressions of
CML277 and CML333 were estimated to be ~90 Mb (Chr 9:
25,654,718-114,922,534 bp, Maize RefGenV1) and 125 Mb
(Chr 9: 11,972,467-136,597,740 bp, RefGenV1) based on
1106 molecular markers genotyped on the NILs (see geno-
typing). These NILs were backcrossed to B73 and their prog-
eny were selfed to produce two segregating NIL families of
~3500 plants. After genotyping, 88 recombinants derived
from the CML277 introgressed NIL and 93 recombinants
derived from the CML333 introgressed NIL were recovered.
These were selfed and fixed for recombinants. Bulks of the
lines were planted in single-row plots and scored for PHT,
EHT, and DTA in Aurora, NY; Columbia, MO; and Clayton,
NC in 2011. Plots consisted of 12, 12, and 8 plants per row
after thinning in New York, Missouri, and North Carolina,
respectively. Single-row plots of 12 and 8 plants per row
were scored again in Columbia, MO and Clayton, NC in
2012. In all environments, plots were grown in incomplete
blocks of 15 fixed recombinants, B73, and the NIL family’s
alternate parent, CML277 or CML333.

In addition to RILs and NILs, the NCRPIS diversity panel
from the USDA-ARS North Central Regional Plant Introduc-
tion Station, was evaluated in 2010. This resource contains
2815 inbreds from worldwide maize gene pools (Romay

et al. 2013). Inbreds were planted in single-row plots and
evaluated for PHT, EHT, and DTA in three environments:
Aurora, NY; Clayton, NC; and Columbia, MO. In New York
and North Carolina, inbreds were planted in plots of 12
plants at Muskgrave Research Station, and Central Crops
Research Station, respectively. In Missouri, inbreds were
planted at South Farm in plots of 15 plants. In all fields,
the NCRPIS panel was stratified by nine maturity groups.
Lines were randomly assigned to two incomplete blocks of
19 inbreds, checks of B73, IL14H, KI11l, P39, SA24, or
TX303 were organized in an a-lattice.

Phenotyping maize height and related traits

In all environments and panels, PHT was measured as the
distance in centimeters from the soil line of the plant to the
base of the flag leaf at reproductive maturity; this measure
excluded any variation in tassel length from the flag leaf to
the top of the plant. Similarly, EHT was scored as the
distance from the soil to the primary ear node, at the same
developmental stage. NPH was scored as the number of
nodes between the top brace root node and the flag leaf,
excluding any variation in brace root nodes and any
subterranean nodes. In all three traits, multiple plants (three
to eight) were measured in each plot and mean plot values
were recorded. As described (Buckler et al. 2009), DTA was
scored as the days from planting to median anthesis in a plot.

Genotyping RIL and NIL families and the NCRPIS
diversity panel

Six molecular marker sets were used for joint-linkage QTL
mapping, GWAS, and GBLUP across NAM and IBM families,
positional mapping across two NIL families, and linear
mixed model GWAS and GBLUP across the NCRPIS inbred
diversity panel. In the first marker set, 1106 markers were
genotyped on an Illumina Golden Gate assay across the
NAM and IBM families to facilitate joint-linkage mapping
(McMullen et al. 2009). In this marker set, missing genotype
calls were imputed as a weighted average of flanking
markers. Relative weights were estimated from the genetic
distance between a missing marker and adjacent markers as
previously described (Tian et al. 2011). These 1106 markers
were also genotyped on an Illumina Golden Gate assay
across the NILs provided by Syngenta to assess introgression
sizes in the B73 background.

A second marker set of ~1.6 million of the 3.3 million
SNPs detailed in the maize HapMapV1 (Gore et al. 2009)
and scored in the 27 founder lines of the NAM and IBM
families were also employed in the analyses. Within this
marker set, missing genotypes were imputed across founder
lines using the haplotype clustering algorithm fastPHA-
SEv1.3 as previously described (Tian et al. 2011). Next,
SNPs were projected onto the 4692 RIL progeny of the
NAM and IBM families by first estimating their physical dis-
tance to the nearest flanking markers of the first marker set
of 1106 markers based on maize RefGenV1. These physical
distances were then used to calculate a weighted average of
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genotype scores from the flanking markers of the first
marker set as an estimate of the projected SNP’s genotypes
across all RILs (Tian et al. 2011). SNP genotype scores were
subsequently used in GBLUP of the RIL families.

A third marker set of ~26 million of the 55 million SNPs
and RDVs reported in the maize HapMapV2 (Chia et al. 2012)
was imputed across NAM and IBM family parents using
regions of identity by descent. These were projected on RIL
families based on their parental lineage and the B73 genome
as previously reported (Tian et al. 2011; Chia et al. 2012). As
in maize HapMap V1, SNPs projected on the RILs were
assigned a value equal to the weighted average of flanking
markers from the first marker set of 1,106 markers genotyped
across all RILs. Weights were estimated by a SNP or read-
depth variant’s (RDV) physical distance from flanking geno-
typed markers based on maize RefGenV1 (Tian et al. 2011;
Chia et al. 2012). This marker set was then employed in joint-
linkage-assisted GWAS of the RIL families.

A fourth marker set consisting of four SNPs was genotyped
using KBioscience’s KASPar SNP genotyping system (http://
www.kbioscience.co.uk/). The assayed SNPs were located at
73,592,864 bp, 99,948,772 bp, 102,469,299 bp, and
109,910,100 bp on the long arm of chromosome 9 in maize
RefGenV1. These SNPs were scored across NILs with CML277
and CML333 introgressions in chromosome 9 obtained from
Syngenta. No imputations or projections of SNPs were per-
formed. The SNPs were used to screen 3488 and 3897 lines
for recombinant haplotypes derived from the CML277 and
CML333 NIL families, respectively.

A fifth set of 1813 SNPs located across a 126-Mb region
on maize chromosome 9 was scored using genotyping by
sequencing (GBS) (Elshire et al. 2011). These SNPs were
genotyped across 86 and 93 fixed recombinants of the
CML277 and CML333 NIL families, respectively. Missing
SNPs were imputed using a nearest neighbors algorithm in
TASSEL v.3.0 (Bradbury et al. 2007) and estimated with
haplotypes of adjacent SNPs in a 1024-bp window (Romay
et al. 2013). Genotype calls across these SNPs were used in
mapping both NIL families.

A final set of 681,257 SNPs scored on the NCRPIS diversity
panel was genotyped using GBS as previously described
(Elshire et al. 2011; Romay et al. 2013). Missing SNPs were
also imputed by a nearest neighbors algorithm in TASSEL
v.3.0 (Bradbury et al. 2007) and estimated with haplotypes
constructed from SNPs in a window of 1024 bp (Romay et al.
2013). The SNPs were then used in linear mixed model
GWAS of the NCRPIS diversity panel and genomic prediction
by GBLUP (Endelman 2011). All marker sets genotyped in
the NAM and IBM families or the NCRPIS diversity panel, and
used within the analyses of this study, are publicly available at
WWwWw.panzea.org.

Partitioning trait variance, calculating heritability,
and estimating line values

To partition trait variation into components of genetic and
environmental variance, we performed linear mixed modeling
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using ASReml v3.0 (Gilmour et al. 1995). To reduce undue
influence of outliers, plot measures over three standard
deviations from each environmental mean were replaced
by the mean plus or minus three standard deviations,
whichever value best approximated the original measure.
Linear mixed model selection was then performed for each
trait with custom Java code calling ASReml v3.0 (Gilmour
et al. 1995). First, trait variation within each of the envi-
ronments was fit in separate models. Terms retained in
these models were chosen by backward selection based
upon likelihood ratio testing (P < 0.05). These terms were
then nested within environment and a multienvironment
model was constructed.

For the RILs of the NAM and IBM families, linear mixed
models separately fit for each environment included a fixed
effect for the grand population mean and multiple random
effects. Random effects entering the full model included
family and RIL nested within family genotypic effects, as
well as environmental effects denoting the blocks, rows, and
columns of each field design. A separate variance compo-
nent was fit for RIL nested within each of the NAM and IBM
families and an additional family term was constructed for
replicated parental checks. All random effects in the model,
including the genotypic effects of family and RIL nested in
family, were modeled with independent G covariance
structures. But, a correlated R structure was fit among
residuals based on a two-dimensional separable first-order
autoregressive spatial structure for rows and columns within
each environment. The importance of all environmental
effects and the residual correlation structures within each
environment’s model were tested by backward selection
and retained if they met a likelihood ratio significance of
P < 0.05.

Next, for each trait, a single linear mixed model across
environments was fit for the RIL families, including and
nesting the significant components of each individual environ-
ment model by environment. Multiple across environment
terms were also added, including environment, family by
environment, and RIL nested within family-by-environment
interaction terms, as well as a heterogeneous spatially corre-
lated R structure across environments. The significant autor-
egressive spatial structures for rows and columns within each
environment were also included in the model. Line values for
each RIL were predicted from the multienvironment model for
use in mapping and prediction (Table S1). Genetic effects for
family and RIL nested within family were refit as fixed effects
within the same multienvironment model to infer best linear
unbiased estimates of line values and their unbiased distribu-
tions. Using these line values, significance of skew about the
mid-parent values for each RIL family was estimated by a mod-
ified two-sided D’Agostino-Pearson test (D’Agostino 1970).
This test was modified such that estimates of the population’s
mean were replaced by the population’s mid-parent value and
significance was determined by the Bonferroni-corrected sig-
nificance threshold of P < 1.9E-3. This enabled the assessment
of skew with respect to the mid-parent and was performed as
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a test for the potential of nonadditive genetic variation with the
assumption that the population was random mating and not
under selection since the initial parental cross.

Recombinant NILs fixed for an introgressed region of
CML277 or CML333 on the long arm of chromosome 9 were
fit in a linear mixed model across the five field environments
surveyed for PHT and EHT and across the three field
environments measured for DTA. Fixed effects were fit for
the grand mean as well as NIL family and line value was
nested within the NIL family. Random effect terms denoting
environment and block nested within environment were
also included in the model. Best linear unbiased estimated
line values for each NIL were then calculated from the
multienvironment model (Table S3).

Within the NCRPIS diversity panel, a single linear mixed
model was fit across all environments including a single
fixed effect for the grand mean and random effects for
genotypic and environmental factors using ASReml v3.0
(Gilmour et al. 1995) for each trait. Random effects entering
the full model included an inbred genotypic effect and the
environmental effects of field, row, column, and blocks in
each environment. Analogous to the RIL families, all random
effects including genetic effects were modeled with indepen-
dent G structures. A two-dimensional separable first-order
autoregressive spatial structure for rows and columns in
each environment and a heterogeneous correlated covari-
ance structure across environments were modeled in the
R structure of the residuals. From the multienvironment
models, best linear unbiased predicted and estimated line
values for each inbred of the NCRPIS diversity panel were cal-
culated for mapping, prediction, and correlation (Table S2).

After constructing the multienvironment models, we
estimated heritability on a line-values basis for every trait
in each of the NAM and IBM families and across the
NAM and NCRPIS diversity panel, as previously described
(Holland et al. 2003; Hung et al. 2012). The variance com-
ponent explaining variation between families and the arith-
metic mean of variance components explaining variation
between lines in each family were summed to infer the
genetic variance of each trait. Genetic variances in each family
were estimated as the variance component explaining varia-
tion between lines of the family. This was also true across the
NCRPIS diversity panel, where genetic variance was estimated
as the variance component explaining variation between lines.
To attain heritability estimates, the values were divided by the
total variance between and within line values after accounting
for variance attributable to established environmental sources.
For estimation of contributions to a single line value, family-
by-environment and line nested in family-by-environment
variance components were divided by the harmonic mean of
the number of environments a family or line was measured as
previously described (Holland et al. 2003). Contributions
of residuals were estimated by dividing the arithmetic
mean for residuals across the heterogeneously modeled resid-
uals for each environment by the harmonic mean number of
plots a line was measured (Holland et al. 2003). Heritability

estimators calculated within a NAM family as well as across
the NCRPIS diversity panel did not involve family or family-
by-environment variance components, but were calculated
similarly.

Bootstrapped QTL mapping across and within
RIL families

Joint linkage mapping of family-nested QTL explaining varia-
tion in line values for each of the traits across all envi-
ronments was performed using the SAS system version 9.2
(SAS 2004-2008). PROC GLMSELECT was implemented to
select a family-nested QTL model from the first marker set of
1106 SNPs nested in each of the 26 NAM and IBM families.
Based on null permutation testing, the threshold for model
inclusion and exit of each family-nested QTL in all traits was
set to a false positive rate of 0.001 during stepwise model
selection. A term denoting RIL family was also forced into
every model. In addition to joint-linkage mapping of RIL
family-nested QTL using the full dataset (Buckler et al. 2009;
Tian et al. 2011), a family-stratified bootstrap sampling
scheme was also executed. In this approach, 80% of the RILs
within each of the NAM and IBM families were randomly
sampled with replacement (20% of RILs were present across
all samples) and the stepwise model selection routine was
performed for 100 sampling iterations to permit calculation
of resample model inclusion probabilities (RMIPs) or the prob-
ability a family-nested QTL is included within the final model
(Valdar et al. 2009). To estimate a genome-wide significance
threshold for RMIPs, null permutation testing was performed
for PHT and EHT. At the previously defined thresholds for
model inclusion and exit, no family-nested QTL were found
to exceed RMIPs of 0.10 upon null permutation of trait values
under the employed bootstrap sampling scheme. Linkage map-
ping of nonnested QTL explaining PHT variation in the line
values of each family was performed in an analogous manner
to joint-linkage mapping to permit calculation of QTL RMIPs.
SAS system code for the sampling procedure is available on
request.

Fine mapping two alleles of a height QTL on
chromosome 9 in NIL families

To begin validation of the family-nested QTL results, we
measured and further resolved two NILs possessing intro-
gressions of the tropical lines CML277 and CML333 on the
long arm of chromosome 9 in a B73 (temperate stiff stalk)
genetic background. In a preliminary analysis, Welch’s
t-tests from the base package of R v2.12.0 (R Development
Core Team 2011) were employed to compare the NILs
obtained from Syngenta to the inbred B73. These analyses
concurred with the significant PHT increasing (relative to
B73) QTL effects identified in the CML277 X B73 and
CML333 X B73 NAM families within the NIIs introgression
regions. After backcrossing the NILs to B73, selfing the
resulting progeny, screening 3488 and 3897 F, plants for
recombinants within the introgression regions, and selfing
two generations with selection for F5 plants homozygous for
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recombinant chromosomes, bulks of the homozygous re-
combinant lines were evaluated for PHT, DTA, and EHT.
Genotyping by sequencing (Elshire et al. 2011) and imputa-
tion were performed across NIL families of 86 and 93
recombinants with introgressions for CML277 and CML333
as previously described. Using Welch’s t-test in R v2.12.0,
the NIL line values for each of the traits were used in 1813
sequential single marker regressions across the introgression
region to further resolve the original NIL effect and support
joint-linkage mapping results within the CML277 and
CML333 NIL families.

GWAS across RIL families and within the NCRPIS
diversity panel

To further resolve the genetic architecture of PHT and
related traits, we conducted a joint-linkage-assisted GWAS
with 4892 RILs across 26 million SNPs imputed from maize
HapMapv2 (Chia et al. 2012). After removing all family-
nested QTL from a single chromosome, the family nested
QTL model was fit to line values for each trait and residual
variance attributed to the removed family-nested QTL as
well as genetic variance not previously accounted for by
the QTL model was determined (Tian et al. 2011). This pro-
cedure was repeated for all 10 chromosomes of the maize
genome. Using these estimates of residual genetic effects
and custom Java code we performed a stepwise regression
procedure as previously described (Tian et al. 2011) with
a genome-wide false positive threshold of 5e-4 as deter-
mined by 2000 null permutations of PHT. The procedure
was repeated for the residuals of each chromosome for
100 stratified sampling iterations whereby 80% of the RILs
within each NAM and IBM family were randomly sampled
with replacement. The RMIP of a SNP was estimated as the
proportion of models containing the SNP (one model for
each stratified sampling iteration) out of the 100 models
that were constructed. This measure was used to assess the
robustness of the SNP's association with the trait. A genome-
wide significance threshold for RMIP values (0.05) was
determined by null permutation testing as previously
described (Brown et al. 2011; Kump et al. 2011; Tian et al.
2011). Proximity of GWAS associations to QTL identified
during joint-linkage QTL mapping and candidate genes were
inferred based on the RefGenV1 physical map and functional
annotations from maize genome sequence release 4a.53.
Using the genome association and prediction integrated
tool (GAPIT) (Lipka et al. 2011) in R v2.12.0 (R Develop-
ment Core Team 2011) we performed sequential single
marker mixed-model GWAS for PHT and related traits
across the NCRPIS diversity panel. This approach included
a relatedness matrix scaled to be analogous to the numera-
tor relationship matrix as described by the first method of
VanRaden (Yu et al. 2006; VanRaden 2008) as well as fixed
covariates for six eigenvectors with the largest eigenvalues
of the relatedness matrix (these eigenvectors explained
31.6% of the variance in additive genetic relationship
matrix) to capture additional population structure and allow
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independent scaling of the matrix. It permitted identification
of significant associations with PHT and EHT. Associations
with Benjamini-Hochberg false discovery rate (FDR) <5%
(Benjamini and Hochberg 1995) were considered signifi-
cant. The proximity of these GWAS associations to candidate
genes was inferred based on the RefGenV2 physical map and
the functional annotations from maize genome sequence re-
lease 5a.

Cross-validated genomic prediction across RIL families
and within the NCRPIS panel

Using the package rrBLUP in R v2.12.0 (Elshire et al. 2011,
Endelman 2011), we conducted genomic prediction by
GBLUP. Identity-by-state (IBS) matrices detailing genomic
relationships were constructed as described by the first
method detailed in VanRaden (2008) for the NAM and
IBM families from 1.6 million SNPs of the maize HapMapV'1
(Gore et al. 2009). Estimates of genomic relationship in the
NCRPIS diversity panel were also calculated using the
681,257 SNPs genotyped in the panel (Bradbury et al
2007). After constructing the genomic relationship matrices,
all line values in an experiment (NAM RILs or the NCRPIS
diversity panel, each analyzed separately) were fit by re-
stricted maximum likelihood in a GBLUP framework to as-
sess variance explained by the method. Next, RILs and
inbreds in each panel were randomly allocated to five dis-
joint subsets for cross-validation (Figure S7). Line values
from combinations of one to four subsets were used in
model calibration to predict line values of remaining sub-
sets. Prediction accuracies were averaged across the folds.
This process was repeated 10 times selecting five random
subsets each time to estimate prediction accuracy with re-
spect to the number of lines included in model calibration.

For comparison to GBLUP of RILs, prediction of NAM
RIL PHT line values by bootstrap aggregating or bagging
(Breiman 1996) family-nested QTL models was performed
using PROC GLMSelect in the SAS system v9.2 (SAS 2004-
2008). However, unlike the approach to map family-nested
QTL, only RILs in a calibration subset were bootstrap
sampled and used to construct family-nested QTL models
to predict the RILs not included in the calibration subset.
Selection of calibration subsets was performed in an iden-
tical sampling scheme to sampling families during GBLUP
cross-validation (Figure S7). But, from every subset of RILs
selected to calibrate a prediction model, 10 bootstrap
samples were taken with replacement in a family-stratified
manner, these samples were not disjoint. From these boot-
strap samples of the calibration subset (and equal in size to
the calibration subset), 10 family-nested QTL models were
constructed. A family term was included in every model
and family-nested markers were included until reaching
the null-permutation threshold (as in the bootstrapping
approach employed in the full dataset). Models from boot-
strap samples of the calibration subset were each used to
predict RILs excluded from the calibration subset and an
average of the predicted values (bagged estimator) was
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calculated for each RIL. While prediction accuracy is tradi-
tionally measured as the correlation (r) between predicted
and observed line values given this statistics connection
with selection accuracy, we measured the coefficient of
determination (r2) obtained by regressing line values
against predicted line values obtained by GBLUP or by bag-
ging family-nested QTL models during cross-validation.
This measure has utility and reveals the variation explained
among the predicted values. But, given that this measure
was employed, it must be noted that in all instances corre-
lations between predicted and observed line values were
positive.

Cross-validated genomic prediction within and between
RIL families

Within each RIL family, GBLUP and bagging of QTL models
was performed in a manner identical to that performed
across families. The variance explained by GBLUP and
predicted from varying calibration sizes was determined.
Similarly, the variance explained and predicted by bagging
QTL models was also estimated in a manner analogous to
that performed across families. However, no family term was
included within the QTL models and markers were not
nested within family, as only a single family was employed
in each model selection process.

Between RIL families, bagging QTL models assuming
allele effects were identical between families revealed no
significant prediction accuracy. This was expected given the
extensive allele series observed during family-nested QTL
mapping. Consequently, between-family prediction accuracy
was only extensively evaluated for GBLUP. A GBLUP model
calibrated by every RIL in a single family was used to predict
RILs in each of the other families. This procedure was
repeated for all 26 RIL families. This provided 650 estimates
of between-family prediction accuracy. To assess the correla-
tion of between-family prediction accuracies and the related-
ness of their families, a modified Mantel test (Mantel 1967)
was invoked between the relatedness matrix (VanRaden
2008) of the non-B73 parent of each family and the matrix
of r2 estimates of between-family prediction accuracy. In the
modified Mantel test, diagonal elements of both matrices were
excluded from analysis as only elements of between-family
prediction accuracy (off-diagonal elements) and not within-
family prediction accuracy were of interest. Inclusion of these
values would have upwardly biased the test’s correlation and
its significance.

Results
Variation in maize height and related traits

Heritable variation was observed for PHT, EHT, DTA, and
NPH in the NAM and IBM families evaluated across 10
environments. PHT, EHT, and DTA measures collected in
the NCRPIS diversity panel across three environments were
also highly heritable. Best linear unbiased estimated line

values for PHT across environments possessed an overall
standard error of difference of 5.2 and 6.4 cm in RIL families
and the NCRPIS diversity panel, respectively. In RIL families,
95% of line values for PHT fell between 138 and 199 cm,
with 95% of EHT line values spanning 61 to 113 cm. The
shortest parent, P39 (116 cm), was shorter than nearly all
RILs, whereas the tallest, TX303 (198 cm), approximated
the tallest. Despite a similar range of parents and progeny
across families, transgressive segregation was present in all
families and significantly asymmetric about mid-parent
values in 9 families for PHT, suggesting a role for epistasis
(Figure 1, supporting information Table S1). Similar levels
of transgressive segregation and asymmetry about mid-
parent values were found for EHT and the other traits in
many families (Figure S1).

The only traits with significantly correlated levels of
transgressive segregation (as measured by correlation of the
ratio of progeny and parent variances) across families were
PHT and EHT, p = 0.63, P < 0.01. No trends in the asym-
metry of progeny distributions (as measured by skew about
the mid-parent value) were found between traits across fam-
ilies. In the NCRPIS diversity panel, 95% of PHT line values
ranged from 110 to 194 cm, while EHT line values fell be-
tween 34 and 119 cm. Despite similar ranges, the greater
allelic diversity of the NCRPIS diversity panel relative to the
RILs was mirrored by its larger variance for PHT and EHT.

Estimates of heritability calculated on a line mean basis
display the proportion of trait variation attributable to
differences between maize lines after accounting for varia-
tion explained by known environmental factors. These
estimates were high for all traits (Table 1) and similar to
past surveys of the NAM families in fewer environments
(Hung et al. 2012). The most heritable trait across the
NAM families was DTA (H%*;,e = 0.94 * 0.01), followed
by PHT (H*jne = 0.93 * 0.01), EHT (H?%*;p. = 0.92 *
0.01), and NPH (H?j,. = 0.89 = 0.02). Traits maintained
rank in the NCRPIS diversity panel: DTA (H?j,. = 0.92 +
02), PHT (H?,e = 0.87 * 0.03), and EHT (H?j,. = 0.86 =
0.02). Variation of heritability estimates within individual
families was small; yet, a significant correlation between
estimates was found for PHT and EHT across families (p =
0.86, P < 0.01).

Unlike recent efforts to detail the genetic architecture of
flowering time photoperiod response in the NAM families
(Hung et al. 2012), more uniform photoperiods were sur-
veyed in the long day temperate environments of this study.
Yet, the fraction of variation attributed to environmental
factors was still significantly greater for DTA than the other
traits for the RILs (Figure 2A) and the NCRPIS diversity
panel (Figure 2B). Adjusting for temperature differences
by converting DTA to growing degree days to anthesis did
not substantially reduce estimates of between-environment
variation. Genotype-by-environment interaction was greater
for PHT and EHT than DTA or NPH in the RIL families and
the NCRPIS diversity panel (P < 0.05).
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Figure 1 Distribution of plant height (PHT) line values within and be-
tween RIL families. Asymmetric transgressive segregation about mid-
parent value was observed for PHT line values in many of the NAM and
IBM families. Similar trends were noted for ear height (EHT), days to

pollen shed (DTA), and node counts (NPH) (Figure S1).
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Table 1 Heritability estimated on a line mean basis

Heritability
Family/panel Plots evaluated PHT EHT DTA NPH
NAM families 57,142 092 093 094 0.89
B73 X B97 1,924 093 0.93 084 0.85
B73 X CML103 1,914 091 091 087 09
B73 x CML228 1,770 0.92 093 094 0.89
B73 X CML247 2,006 093 093 093 0.87
B73 X CML277 2,020 092 092 094 088
B73 X CML322 1,859 092 092 091 0.90
B73 X CML333 1,892 093 093 094 091
B73 X CML52 1,860 092 092 092 0.88
B73 x CML69 1,911 093 094 089 086
B73 X Hp301 1,921 092 092 090 091
B73 X I114H 1,805 0.93 093 091 093
B73 X Kil1 1,905 093 094 094 0.89
B73 X Ki3 2,041 092 092 093 091
B73 X Ky21 1,918 093 093 084 09
B73 X M162W 2,023 092 092 091 092
B73 X M37W 1,942 091 091 0.89 093
B73 X Mo18W 1,830 0.92 093 093 092
B73 X MS71 1,896 092 092 089 0091
B73 X NC350 1,841 093 094 092 0.389
B73 X NC358 1,861 092 092 086 0.88
B73 X Oh43 1,920 095 094 081 0.90
B73 X Oh7B 1,890 094 095 090 0091
B73 X P39 1,876 092 093 095 084
B73 X Tx303 1,678 094 094 092 0.89
B73 X Tzi8 2,107 094 095 092 093
B73 X Mo17(IBM) 1,989 093 094 092 091
NCRPIS diversity panel 7,471 0.87 0.86 092 NA

Plots evaluated detail the number of plots scored for PHT across all environments.
The other surveyed traits possessed comparable values within each family or panel
with the exception of NPH, which was not scored in the NCRPIS diversity panel. PHT,
DTA, EHT, and NPH detail the proportion of variance between and within lines
explained by between line variance after accounting for known environmental
variation in the respective trait.

Of the traits surveyed in RIL families, the largest correla-
tion of line values was estimated between PHT and EHT (r =
0.77, P < 1e-6) (Figure 3A). Correlations remained strong
within most NAM families (Figure S2), the IBM family
(Figure 3B), and NCRPIS diversity panel (r = 0.59, P <
le-6). However, correlation between PHT and DTA were
greater in the NCRPIS diversity panel (r = 0.78, P < 1e-6,
Figure 3C) than the RIL families (r = 0.34, P < le-6,
Figure 3A).

QTL mapping of maize height and related traits

To identify QTL, bootstrapped joint-linkage mapping was
performed across RIL families (Table 2, Table S3). Eighty-
nine family-nested markers with RMIPs >0.10 (marker
present in >10 of 100 models) were associated with PHT
line values (Figure S3). Ninety-two family-nested markers
were associated with EHT and a total of 91 and 83 family-
nested markers associated with DTA and NPH, respectively.
All had RMIPs >0.10. Many associated markers represented
clusters of linked loci and likely correspond to the same QTL.

Before accounting for family-nested QTL, differences
between families explained 30 * 4% of PHT variation in
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line values in the NAM and IBM families. Similarly, 46 = 4%
of EHT variation in line values was explained by family
effects. By comparison, family mean differences were
more important for DTA (62 = 3%) and NPH (64 = 4%).
Beyond variation explained by families, family-nested QTL
explained 46 + 5% of PHT variation in line values. The locus
explaining the most variation was found on chromosome 9
and explained 2.1 * 0.9% of PHT variation after accounting
for variation attributed to families and other estimated fam-
ily-nested QTL. This estimate rose to 2.6 * 0.5% of PHT
variation among the 66 models that possessed no linked
family-nested QTL within 10 cM of the locus. In total, the
joint-linkage QTL models explained 76 * 4% of PHT varia-
tion and 78 * 3% of EHT variation, whereas they accounted
for 85 *= 3% of DTA variation and 82 *= 3% of NPH
variation.

Variation in QTL effects among RIL families suggested
allele series for all traits. All family-nested PHT QTL had
significant effects in at least four families (¢t-test, within fam-
ily, P < 0.05) and positive and negative effects relative to
the shared parent, B73. Although most family-nested QTL
were not near loci with established effects on PHT, a few did
colocalize with previously identified PHT loci (Table 2,
Table S4, Figure S3). The most notable was a QTL with
RMIP of 0.77 within the 15.5-kb locus of brassinosteroid-
deficient dwarf 1 (brdl) (Pettem 1956; Makarevitch et al.
2012) on chromosome 1 at 248,503,298 bp (RefGenV1).
In 18 of the 26 RIL families, this QTL was estimated to
reduce PHT relative to the shared parent, B73. In addition,
crinkly leaves 1 (Beavis et al. 1991) on chromosome 3 and
crinkly leaves 4 (Stinard and Robertson 1987) on chromo-
some 10 were also near family-nested QTL with RMIPs of
0.12 and 0.19, respectively. Maize plants with the crinkly
leaves 1 or 4 mutant allele are short and possess crinkly
knot-bearing leaves (Stinard and Robertson 1987; Beavis
et al. 1991). As previously reported, vegetative to generative
transition 1 and zfl2 flowering time loci were also near
family-nested QTL for DTA (Buckler et al. 2009; Romay

Node count
(NPH)

Figure 2 Partitioning variation in PHT, EHT, DTA, and
NPH. PHT, EHT, DTA, and NPH variation was attributed
to genetic and environmental factors across the NAM
families (A) and within the NCRPIS diversity panel (B).

Genetic

Genetic x environment
Environment

Error

et al. 2013) and NPH. However, these DTA loci did not
overlap with family-nested QTL for PHT or EHT.

The effects of family-nested PHT QTL on EHT, DTA, and
NPH were estimated to assess the importance of pleiotropy
and/or linkage (Table 2, Table S4, Figure 4). Allelic effects
on EHT had the strongest correlation with PHT effects, r =
0.77, P < 1e-6, whereas the weakest occurred between PHT
and DTA, r = 0.16, P < le-6. These estimates paralleled
correlations of line values across the RILs (Figure 3A). Sim-
ilar trends were also observed for the effects of family-
nested EHT, DTA, and NPH QTL on PHT and for QTL effects
mapped in individual families (Figure S4).

Fine mapping a maize height QTL in two NIL families

The effects of two tropical alleles (from CML277 and
CML333) at the PHT QTL explaining the most variation
(2.1%) in joint-linkage mapping were independently vali-
dated in two NIL families. The QTL interval was a 15-Mb
region on chromosome 9 centered at 98.5 Mb (RefGenV1).
It contained five joint-linkage markers each with a RMIP
>0.10 for PHT. One of the five markers was present in every
model upon bootstrapped joint-linkage mapping of PHT and
EHT; but two markers never entered the same model. This
gave the region a combined RMIP of 1.00 and implied seg-
regation of a common factor. In mapping NPH, two markers
in the region had a combined RMIP of 0.60 but no marker
with a RMIP >0.10 was found for DTA.

The CML277 and CML333 alleles of the QTL significantly
increased PHT by ~6 or 4 cm, respectively, relative to the
B73 reference allele in family-nested joint-linkage models
and also in single family models where the effects were
estimated (Table S4 and Table S5). Two NILs with a B73
genetic background and introgressions from CML277
(90-Mb segment) or CML333 (125-Mb segment) at this
QTL region were selected to independently validate and
resolve the initial joint-linkage mapping results. Relative to
B73, the introgressions increased PHT by ~5 cm in both
NILs (P < 5e-4). After backcrossing NILs to B73, selfing
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Figure 3 Correlations of estimated PHT, EHT, DTA, and NPH line values. Pairwise trait correlations across all NAM families (A) and within the IBM family
(B). Trait correlations within each of the NAM families were similar (Figure S2). The NCRPIS diversity panel differed, displaying higher correlations

between PHT and DTA than PHT and EHT (C).

the resultant progeny, identifying recombinant haplotypes,
and testing homozygous recombinant progeny lines, effects
were resolved to a region of ~10 Mb on chromosome 9 in
both NIL families (CML277: 102,469,299-109,910,100,
CML333: 99,948,772-109,910,100, RefGenV1). Effect esti-
mates in this interval were maintained at 7 cm (P < 5e-4)
for the CML277 allele and ~4 cm (P < 5e-4) for the CML333
allele (Figure 5, Table S7). The intervals contained >100
genes, including several transcription factors, but no obvious
PHT candidate genes with involvement in auxin, brassinoste-
roid, or gibberellin synthesis, transport, or signaling path-
ways were identified.

GWAS of maize height and related traits

To resolve additional associations, we performed a joint-
linkage-assisted genome-wide association study (GWAS)
across RILs of the NAM and IBM families (Table 3, Table
S6, Figure S3). In total, 277 associations with RMIP >0.05
were found for PHT. Effect sizes of the mid 95% of these
associations spanned —2.4 to 1.9 cm. Many of these associa-
tions cosegregated with allele effects of their nearest family-
nested QTL, yet several affected height in a direction opposing
the allele effect of nearby QTL. Many associations not linked to
QTL were also found. At the interval on chromosome 9 map-
ped in the NIL families, seven associations with RMIPs >0.05
were found. Three were polymorphic between B73 and
CML277 or CML333 (Chr 9: 97,520,280; 100,367,415; and
100,371,640; RefGenV1). All increased PHT relative to the
B73 allele, but none were within 100 kb of genes known to
influence PHT (Figure 5, Table S7).

Nonetheless, a few significant GWAS variants in other
genomic regions were near genes known to influence PHT
(Table 3). The most notable colocalized with the family-
nested QTL in the brdl locus. These associations consisted
of two C/T transitions (Chr 1: 248,503,977 and Chr 1:
248,505,581 bp; RefGenV1). The variants possessed effects
on PHT of —1.39 cm and —1.24 cm relative to the B73
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allele, RMIPs of 0.42 and 0.12, and segregated in at least 4
and 9 of the 26 families, respectively. Other significant var-
iants near genes of interest included a C/T transition (Chr 1:
74,769,251 bp; RefGenV1) with a RMIP of 0.63. This associa-
tion was 17 kb from a homolog (GRMZM2G068701) of the-
Arabidopsis thaliana gene encoding AUXIN UPREGULATED3
(AT4G37390) (Staswick et al. 2005). Another association
(Chr 2: 1,907,158 bp; RefGenV1) with a RMIP of 0.98 was
35 kb from a homolog (GRMZM2G068202) of a rice gene
(0s05g35690) encoding a Gibberellin-regulated GAST
protein. Finally, an association on Chr 3 (10,179,485 bp;
RefGenV1) had a RMIP of 0.22. Although no QTL were
nearby, the A/G transversion was 50 kb from dwarf
plant1 (d1) (Emerson 1922) (Chr 3: 10,229,006-10,228,832;
RefGenV1).

We also conducted GWAS in the NCRPIS panel, identi-
fying 213 PHT associations with a FDR of <5% (Table 4,
Table S8), of which 174 had minor allele frequencies
(MAFs) >5%. The mid 95% of effect sizes fell between
—4.6 and 4.7 cm. No association explained over 1% of PHT
variation. PHT associations identified separately in the RILs
and the NCRPIS panel had limited overlap. But, a few PHT-
associated variants of the NCRPIS panel did colocalize with
candidate genes (Table 4, Table S8). A GWAS variant (Chr 3:
158,897,644 bp; RefGenV2) with a g-value of 0.01 was found
in the semi-dwarf2 (sdw2) locus (Neuffer 1990, 1992) (Chr 3:
158,841,148-161,311,068; RefGenV2 and IBM2 2008 Neigh-
bors map). This C/T transition had a MAF of 0.36 and
explained 0.65% of PHT variation in the panel. Its effect on
PHT was +2.9 cm and it was found in a calmodulin-binding
transcription activator (GRMZM2G171600). Also, two PHT-
associated variants (Chr 5: 175,615,577 bp and Chr 5:
175,615,580 bp; RefGenV2) with g-values of 0.01 were in
complete LD 30 kb from a putative gibberellin receptor GID1L2
(GRMZM2G049675). These C/T transitions had a MAF of
0.13, an effect of +4.9 cm, and explained 0.65% of PHT
variation.
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Table 2 Top height-associated family-nested QTL across RIL families

Combined RMIP

Chr Mb M PHT EHT DTA NPH Nearby annotations of interest
1 10 20 54 64 0 0
1 29 47 36 0 0 0
1 66 75 47 25 17 0
1 83 82 45 64 95 51
1 184 99 54 0 0 59
1 204 117 43 44 40 0
1 249 148 71 66 0 0 brassinosteroid-deficient dwarf1 (Pettem 1956)
2 1 0 46 32 0 0
2 3 7 40 15 0 0
2 90 76 44 1 76 31
3 5 21 12 0 0 0 crinkly leaves1 (Beavis W et al. 1991)
3 10 34 34 23 0 0
3 24 52 64 54 33 67
3 160 73 67 26 78 78
4 148 62 44 53 0 0
4 235 115 52 43 12 0
5 89 70 27 51 40 0
5 201 109 69 91 0 1"
6 92 19 21 20 0 0
6 96 22 77 51 12 0
6 141 55 27 28 0 12
6 147 58 21 0 0 0
7 33 48 56 16 0 67
7 135 73 52 61 37 17
7 143 81 22 0 0 0
7 152 89 27 0 0 0
7 155 95 58 23 0 0
8 22 49 24 19 0 0
8 121 64 69 91 98 97
9 99 50 83 96 0 15
9 1M1 55 34 19 47 40
9 133 69 64 17 0 0
10 5 15 19 11 15 7 crinkly leaves4 (Stinard and Robertson 1987)
10 140 69 26 0 0 50
10 147 91 36 13 0 0

The combined resample model inclusion probability (RMIP) details the number of models one or more markers located within 3 cM of the stated association was selected out
of the 100 models constructed for each trait (PHT, EHT, DTA, NPH). Each of the 100 models was calibrated from a family-stratified sampling of RILs during bootstrapped joint-

linkage mapping. Mb denotes megabase positions in maize RefGenV1. ctM denotes centimorgan positions of the composite NAM family genetic map.

Prediction of maize height and related traits

Prediction of RIL values by GBLUP and bootstrap aggregat-
ing (bagging) family-nested QTL models was significant in
most traits and populations (Figure 6, Figure S6). Across RIL
families, GBLUP based upon randomly chosen calibration
subsets of 940 RILs (20% of line values, Figure S7)
explained 63 = 3% of PHT variation in the remaining RILs.
This was greater than the 23 = 10% of variation explained
by bagging family-nested QTL models with equally sized
calibration subsets (Figure 6A). As calibration subsets
increased to 3760 RILs (80% of line values), differences in
prediction accuracy remained and bagging family-nested
QTL models still did not perform as well as GBLUP
(Figure 6A).

Within RIL families, prediction accuracies by GBLUP and
bagging QTL models were more similar to each other than
across families. Using 38 RILs (20% of IBM family, Figure
S7), 11 £ 10% of PHT variation in the remaining RILs was

explained by GBLUP (Figure 6C). As calibration subsets in-
creased to 152 RILs (80% of IBM family), GBLUP explained
23 = 10% of PHT variation. Similar accuracies were attained
bagging QTL models (Figure 6C). In addition to the IBM
family, within-family PHT prediction accuracy was evaluated
for each NAM family (Figure S8). In most families, results
mirrored the IBM family and prediction accuracies of GBLUP
and bagging QTL models rarely significantly differed. In
instances where differences between the methods were
observed, GBLUP always outperformed bagging of the QTL
models.

Between RIL families, PHT prediction accuracies by
bagging QTL models were low (<5% PHT variation pre-
dicted) for pairwise comparison of RIL families (one family
was used to estimate allele effects that were then fit to gen-
otypes of an alternate family to predict its height). However,
significant PHT prediction accuracies were attained between
RIL families by GBLUP. These ranged from explaining no
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Correlation of RIL family-nested QTL effects
(Family-nested QTL selection by PHT)
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Figure 4 Correlations of estimated PHT, EHT, DTA, and NPH family-
nested QTL effects. Allele effects for family-nested QTL from 100 models
were estimated for PHT, EHT, DTA, and NPH. Correlations among esti-
mated allele effects for each trait were then calculated. Family-nested QTL
for EHT, DTA, and NPH were also estimated for all traits (Figure S4).

variation in an alternate family to explaining 38% of its
PHT variation (Figure 7). As expected, closely related
families, such as those sharing both B73 and a sweet corn
parent (B73 X IL14H and B73 X P39), had higher be-
tween-family PHT prediction accuracies than distantly
related families sharing only B73. Correlation of between-
family prediction accuracies and the relatedness of their
families was formally tested by a modified Mantel test (r =
0.57, P < 0.01).

Within the NCRPIS diversity panel, GBLUP did not
perform as well as across the RIL families (Figure 6E). Using
459 inbreds (20% of the NCRPIS diversity panel, Figure S7),
37 * 2% of PHT variation in the remaining inbreds was
explained by GBLUP. Prediction accuracy did not greatly
improve as calibration subset size increased. A GBLUP cali-
brated with 1834 inbreds (80% of the NCRPIS panel)
explained 42 *= 5% of the PHT variation in the remaining
inbreds.

Discussion

Despite the importance of plant height in experimental
genetics and breeding (Mendel 1866), the molecular me-
chanics of natural PHT variation remain largely elusive. Like
human height (Galton 1886; Visscher 2008; Yang et al.
2010), PHT is a highly heritable polygenic trait in natural
populations. Variation in PHT is well explained by Fisher’s
infinitesimal model of genetic architecture where infinitely
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many unlinked genes each contribute an infinitesimally
small additive effect (Fisher 1919; Hill 2010). While deca-
des of research in plant biochemistry and molecular biology
reveal this is not a plausible model of genetic causality (e.g.,
interactions in hormonal pathways have proven importance)
(Wang and Li 2008), decades of breeding show the infini-
tesimal model has utility in predicting response to selection
in complex traits like PHT (Crossa et al. 2010). Of course,
these findings are not mutually exclusive. A model’s predic-
tive ability does not imply its capture of causality. This is
particularly true in high-dimensional observational studies
of natural variation with limited control of confounded (pop-
ulation structure and LD) and hidden (unmeasured epigenetics
and microenvironments) variables. Yet, some models are
useful, especially those with genetic variables estimated to
robustly contribute more than expected by their infinitesimal
counterpart. They allow us to begin to dissect a population’s
true genetic architecture and may enhance prediction of its
evolutionary change.

Contrasting mapping panels and methods

Genetic variation in PHT and related traits in the NAM and
IBM families was partitioned into family-nested QTL by
bootstrapped joint-linkage mapping (Table 2, Table S4, Fig-
ure S4). The size, common alleles, and well-defined struc-
ture of the families provided power to identify family-nested
trait associations at a cost of the mapping resolution attained
when not nesting associations (Yu et al. 2008). Joint-linkage
mapping assumes colocalization of QTL for a trait across fam-
ilies but allows differing allele effect magnitude and direction
within each family. If the genetic architecture of each family
greatly differs, this assumption may bias family-nested QTL
models to overestimate the degree of colocalization among
effects within families. However, linkage mapping of PHT
QTL conducted independently in each family yielded similar
results for most family-nested PHT QTL identified by joint-
linkage mapping (Table S5).

Alternatively, joint-linkage mapping may be statistically
inefficient if QTL colocalize and have the same effect across
families. A model fitting this architecture was assessed by
GWAS across the NAM and IBM families. Comparing the
results of joint-linkage mapping and GWAS revealed the
strongest GWAS associations were often near the most
robust family-nested QTL, but most were distributed across
the genome and many GWAS associations near family-
nested QTL did not cosegregate or maintain directionality
of effects consistent with their nearest QTL. This may be due
to differing power and resolution when mapping family-
nested PHT QTL compared to GWAS. If a QTL is the
cumulative effect of linked variants in repulsion phase
within a family they may not be apparent in joint-linkage
mapping. In GWAS ancestral recombination of parental
haplotypes may prove sufficient to reveal the individual
contributions of these variants across families. Conversely, if
a family-nested QTL results from a single variant but its
effect is epistatic and depends upon a family’s background
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Figure 5 NIL families support of CML277 and CML333 alleles at a RIL family-nested QTL. Two families of recombinant lines with introgressions of
CML277 (A) and CML333 (B) on chromosome 9 in a B73 background were queried for association with PHT to validate a NAM family-nested QTL
(RefGenV1 Chr 9: 98,502,843) with significant allele effects when mapped independently in B73 X CML277 and B73 X CML333 RIL families. Within
NIL families, t-tests for PHT associations using genotyping by sequencing (GBS) marker variants and Kaspar assays across a region of 10 Mb supported
allele effect estimates. The smaller effect of the CML333 allele relative to CML277 also concurred within the families. Three associations (RefGenV1 Chr
9: 97,520,280; 100,367,415; and 100,371,640) identified to increase PHT relative to B73 by GWAS and segregating between B73 and CML277 or

CML333 were also in the region.

allele frequencies, it may be identified in joint-linkage map-
ping, but may not associate in GWAS. These allele model
scenarios and an intermediate scenario created by clustering
multiple parental alleles by windows of locally inferred an-
cestral similarity have been compared in a recent study
(Bardol et al. 2013). The study found models leveraging
linkage and linkage disequilibrium information, like the
joint-linkage-assisted GWAS performed herein, found more
QTL than linkage mapping alone, but no single allele
model performed best for all datasets and traits. This lends
to the conclusion that it remains important to test many
different allele model scenarios to benefit from their com-
plementarities while mapping (Kump et al. 2011; Bardol
et al. 2013).

Factors contributing to differences in associations found
by the different allele model scenarios of joint-linkage
mapping and GWAS across the RIL families are also likely
responsible for differences in associations found by GWAS
across the RIL families and the NCRPIS diversity panel.
Furthermore, alternate methods used to account for pop-
ulation structure during GWAS in the NCRPIS panel and
across the RIL families (see Materials and Methods) may also
contribute to lack of widespread commonality among asso-
ciations. Despite this limited congruency, effects of two
alleles at the PHT QTL explaining the most PHT variation
when mapped across RIL families were maintained after
being isolated from other segregating loci and validated in
NILs. This suggests the most robust allele associations may
be less dependent upon background alleles and may retain

their utility in molecular marker-assisted selection during
plant breeding.

Polygenicity of maize height and frequencies of
associated alleles

The normality and high heritability of PHT variation in all
populations surveyed suggested a high degree of polygenic-
ity. Joint-linkage mapping confirmed this hypothesis and
showed models of family main effects and QTL effects nested
in families explained less variation in PHT and EHT than in
DTA and NPH, suggesting that PHT and EHT are more
polygenic than DTA and NPH. The large number and small
effects of associations found during GWAS of RIL families and
the NCRPIS panel also supported a high degree of poly-
genicity for PHT (Table S8), but the additivity and manner
that this variation is distributed among large and small effects
remains a point of contention.

The Fisher-Orr model postulates that independent poly-
genic traits with equally scaled influence on fitness will have
an exponential distribution of genetic effect sizes (Fisher
1930; Orr 2005; Brown et al. 2011), meaning a few alleles
will have large effect but most will be small. It also posits
that genetic effects fixed by selection will, at first, be large
and then be reduced in a geometric sequence as a population
nears optimal fitness. In this dynamic, newer rare alleles will
bear larger effects that have yet to be purged; while older
common alleles will bear smaller effects. This trend was
found in the NCRPIS panel where rare alleles had larger
effects on PHT than common alleles (Figure S9). The trend

The Genetic Architecture of Maize Height 1349


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.159152/-/DC1/genetics.113.159152-15.txt
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.159152/-/DC1/genetics.113.159152-9.pdf

Table 3 Top height-associated QTN by joint-linkage-assisted GWAS across RIL families

Chr Position RMIP P-value Nearby annotations of interest
1 74,769,251 63 3.10E-22 Homolog of AUXIN UPREGULATED 3 in A. thaliana
1 243,646,785 74 1.79E-11
1 248,504,011 42 1.81E-16 brassinosteroid-deficient dwarf1 (Pettem 1956)
1 285,096,711 54 5.29E-08
2 1,907,158 98 7.39E-31 Homolog of Gibberellin-regulated GAST in O. sativa
3 10,179,485 22 1.36E-11 dwarf plant1 (Emerson and Emerson 1922)
3 21,644,498 80 7.55E-21
3 158,425,337 60 4.21E-13
3 163,876,586 80 2.05E-23
4 152,011,687 53 3.38E-16
4 223,212,889 64 6.25E-50
5 200,084,856 72 2.15E-25
6 96,782,537 88 1.87E-11
6 152,327,461 82 3.86E-07
7 34,507,421 55 3.23E-18
7 115,984,409 78 7.26E-10
7 141,767,918 84 6.17E-15
8 109,065,095 97 7.96E-24
8 118,514,691 98 1.29E-41
8 119,634,216 71 2.45E-12
10 5,930,926 57 1.52E-12
10 25,565,254 62 1.34E-23

“Nearby” references those annotations within 100 kb of an association. RMIP denotes the resample model inclusion probability detailing the number of models the variant
was selected out of 100 forward regression models. Physical positions of the variants across the NAM and IBM families are stated with respect to maize RefGenV1.

has also been found in previous maize flowering time stud-
ies (Bouchet et al. 2013).

However, it is important to note that assumptions of the
Fisher-Orr model are violated in the NCRPIS panel. The
most pervasive is a lack of independence of traits as well
as loci. This covariance leaves potential for antagonistic
pleiotropic effects among traits and repulsion phase linkages
among loci. These may preserve higher frequencies of large
effects. Population structure also complicates the model
when subpopulations are jointly analyzed. Each subpopula-
tion may evolve by a different evolutionary path lending
selection to act upon unique genetic effects in each sub-
population due to epistasis, environment, and genetic-by-
environment interactions creating shifting local fitness
optima. Biological relevance of effect size and rare alleles
are also confounded to an unknown extent by statistical
artifact. Only rare alleles with large effects will pass signif-
icance thresholds. Similarly, false positive associations are
more likely among rare alleles due to increased leverage
of trait outliers and biased estimates of the PHT distribution
of plants bearing the rare allele. Therefore, while the fre-
quency spectrum of the Fisher-Orr model is approximated
by PHT-associated variants it remains controversial if this is
biologically relevant or a statistical artifact.

Pleiotropy of maize height and related traits

Variation in PHT was more strongly positively correlated
with DTA than even EHT (Figure 3C) in the NCRPIS panel,
but not the RIL families (Figures 3, A and B, Figure S2). In
the NCRPIS panel, correlation between PHT and DTA may
result from inclusion of late-flowering tall tropical lines. In
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contrast, recent recombination within the RIL families may
have broken linkages of PHT and DTA loci in RIL families as
evidenced by reduced correlation between PHT and DTA
across RILs relative to their parents. This suggests that
PHT and DTA may be controlled by distinct loci in LD in
the NCRPIS panel and RIL parents and that recombination
during RIL development exposed the independence and
modularity of their genetic architectures within RIL families.
To more directly assess the importance of pleiotropy among
loci for PHT and other traits in the RIL families, correlations
among common QTL effect estimates were calculated. While
linkage still influences these estimates, correlations of QTL
effects on traits displayed similar trends to those on line
values (Figure 3A, Figure 4, Figure S2, Figure S4). Correla-
tions between QTL effects for PHT and EHT were strongest,
whereas those for PHT and DTA were weakest. These find-
ings support the modularity of PHT and DTA genetic archi-
tectures and their independent evolvability.

Transgressive segregation and allelic series

Contrasts of trait values of RIL families and their parents
revealed transgressive segregation for PHT in many families
(Figure 1). Direct evidence for the basis of this transgressive
segregation was found in the positive and negative effect
alleles at QTL for PHT and other traits in every family. These
effects suggest repulsion phase alleles were present in every
inbred parent of the NAM and IBM families for every trait at
available mapping resolution. The NAM panel was well
designed to reveal allelic variation (or “allelic series”) at
QTL (Buckler et al. 2009) due to segregation of different
additive alleles within families. Apparent allelic series may
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Table 4 Top height-associated QTN by linear mixed model GWAS in the NCRPIS panel

Chr Position P-value % var. MAF Nearby annotations of interest
1 210,523,816 2.34E-08 0.81 0.13
1 276,301,378 5.97E-09 0.88 0.23
1 279,563,896 2.12E-07 0.70 0.19
3 158,897,644 5.11E-07 0.65 0.36 semi-dwarf2 (Neuffer 1990, 1992)
3 159,555,813 4.59E-07 0.66 0.28
3 161,559,292 5.42E-07 0.65 0.28
3 172,927,922 9.65E-07 0.62 0.34
3 199,486,592 5.60E-07 0.65 0.32
3 201,259,090 1.16E-07 0.73 0.22
3 201,670,688 3.08E-07 0.68 0.39
4 220,918,216 6.89E-07 0.64 0.26
5 175,615,577 8.36E-06 0.51 0.13 Putative Gibberellin receptor GID1L2
6 25,290,244 6.65E-07 0.64 0.09
7 107,232,529 4.29E-07 0.66 0.27
8 131,176,630 1.24E-07 0.72 0.26
8 131,176,643 8.24E-10 0.98 0.30
8 131,176,679 5.29E-07 0.65 0.40
8 131,527,597 1.82E-08 0.82 0.37
8 131,904,755 4.51E-09 0.89 0.50
8 131,904,775 2.65E-09 0.92 0.50
8 131,904,780 3.71E-09 0.90 0.50
8 131,904,787 3.71E-09 0.90 0.50
8 132,047,205 8.03E-07 0.63 0.25
8 132,199,932 9.25E-07 0.62 0.28
8 134,736,543 5.66E-07 0.65 0.15

10 14,908,520 9.55E-07 0.62 0.14

10 31,014,424 7.03E-07 0.64 0.33

10 31,028,430 7.67E-07 0.63 0.33

10 31,028,444 7.80E-07 0.63 0.33

10 31,028,490 2.54E-07 0.69 0.36

10 31,028,651 1.45E-07 0.72 0.35

10 31,191,977 9.03E-07 0.62 0.37

10 148,879,043 5.69E-07 0.65 0.15

10 148,879,067 5.71E-07 0.65 0.16

10 148,879,068 5.69E-07 0.65 0.15

“Nearby” references those annotations within 100 kb of an association. Physical positions of the variants across the NCRPIS diversity panel are stated with respect to the
maize RefGenV2. Percent var. refers to the difference in the coefficient of determination after including the stated variant in a linear mixed model already accounting for
height variation explained by an additive relationship matrix and fixed effect covariates constructed from its six largest eigenvectors. MAF refers to the minor allele frequency

of the association.

also arise from family-specific epistatic interactions that map
in an additive manner. Similarly, epistatic interactions may
be responsible for asymmetry in transgressive segregation
noted within several RIL families.

Associations with genes in canonical hormonal
pathways of plant height

Examination of >120 loci and genes affecting PHT through
canonical pathways (gibberellin, brassinosteroid, and auxin
signaling, transport, and synthesis) and identified by molec-
ular tagging, past cloning efforts (Multani et al. 2003), or
orthology to PHT associated genes in other species identified
few commonalities with associations found in the NAM and
IBM families (Table 2, Table 3). Review of loci like dwarf8
and dwarf9 regulating DELLA proteins in gibberellin signal-
ing (Peng et al. 1999) and loci containing the GA20-oxidase2
critical to gibberellin synthesis and responsible for height
reductions of the Green Revolution (Monna et al. 2002)
did not reveal colocalizing associations. However, a GWAS

association was found near dwarf1 and its GA3-B-hydroxylase2
involved in gibberellin synthesis. This supports the effect of
dwarf1 on natural PHT variation in a recent mapping effort
taken in a separate maize panel (Teng et al. 2013), and its
significance as a maize improvement gene in a recent genome
scan for selection among the improved maize lines and the
landraces of maize HapMapV2 (Hufford et al. 2012). No PHT
associations were near the cytochrome P450 (Hong et al
2002) in dwarf 3, involved in gibberellin synthesis or nana
plant] impacting brassinosteroid synthesis (Hartwig et al.
2011), but a family-nested QTL and two GWAS associations
were found near a cytochrome P450 affecting brassinosteroid
synthesis in brassinosteroid-deficient dwarfl (Makarevitch
et al. 2012; Stinard 2012). As for auxin, no associations were
in brachytic2 impacting polar auxin transport (Multani et al.
2003); but, an association was near an ortholog of Arabidopsis’
AUXIN UPREGULATED3 (Staswick et al. 2005). Like the RIL
families, few PHT associations colocalized with candidate
genes in the NCRPIS panel with the exception of semi-dwarf2
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(Neuffer 1990, 1992), a locus with established influence on
PHT (Table 4, Table S8, Figure S5). Limited colocalization
may be due to lethality of the extreme effects of established
loci. Previously identified loci possess a much larger effect on
PHT than estimated effects mapped in the RIL families or
NCRPIS panel. For this reason, they may be functionally con-
served in natural diversity, as large effect alleles are rapidly
purged by selection.

Prediction of maize height and related traits

Pedigree methods and estimates of identity-by-descent have
long assisted breeding programs to predict genetic merit
before trait evaluation (Crossa et al. 2010). In doing so, these
approaches used an infinitesimal model to interpolate a
population’s phenotypic landscape and help breeders opti-
mize allocation of evaluation resources to lines with the most
predicted promise. Recently, prediction models inferring
identity by state from genotyped variants, like GBLUP, mod-
els selecting variant subsets, like QTL models, and model-
averaging approaches, like bagging (Breiman 1996), have
accrued interest in breeding. These serve a similar purpose
to pedigree-based prediction (Lorenz 2013), but leverage
genotyping advances to complement pedigrees and refine
comparisons of progeny assumed equally related in a pedi-
gree model by further detailing Mendelian sampling of
alleles. To assess prediction accuracies of our genetic models
of PHT and other traits, we evaluated GBLUP performance in
the NCRPIS panel. We also compared GBLUP and bagging of
family-nested QTL models across, within, and between RIL
families in cross-validation routines with calibration and pre-
dicted subsets of varied size and structure. These GBLUP
analyses were performed and comparisons were made to
QTL models to evaluate multiple models of genetic architec-
ture differing in their polygenicity and effect sizes and to de-
termine if they both plausibly explain a population’s variation
in maize height among populations possessing observed and/
or unobserved line values.

Within the NCRPIS panel, GBLUP revealed significant
prediction accuracies for PHT, EHT, and DTA (Figure 6E),
but these were lower than prediction accuracies in the NAM
and IBM families. The increased diversity and reduced geno-
typing density in the NCRPIS panel relative to the HapMap
v1 SNPs projected onto NAM and IBM families is likely the
largest factor contributing to the reduced accuracy. The in-
creased structure of the NCRPIS panel also suggests each
subpopulation may possess a unique evolutionary history
with selection acting on alternate genetic effects in each
subpopulation due to epistatic and genetic-by-environment

interactions. The additive GBLUP model may fail to capture
such dependencies.

Family-nested QTL models explained substantial varia-
tion in PHT in calibration subsets, but had poor prediction
accuracies. This suggests the family-nested QTL overfit the
calibration subset (local region of the phenotypic land-
scape), reducing their generalizability when predicting the
global phenotypic landscape or other localities. To reduce
variance in predictions of a given line value among family-
nested QTL models, bagging of the models was employed.
While this reduced overfitting and slightly improved pre-
diction, bagged family-nested QTL model estimates were
still largely dependent on calibration subset size and did not
perform as well as GBLUP.

Within RIL families, prediction accuracies of PHT were
more similar between the two prediction methods (Table
S9, Figure S8), but GBLUP outperformed bagged predictions
derived from nonnested QTL mapping on many occasions.
Their increased similarity in accuracies may be due to the
reduced population sizes and overall reduction in prediction
accuracies of both methods relative to across family predic-
tion. Also, the increased relatedness of RILs within a family
may reduce differences in prediction accuracy between mod-
els. Between RIL families, prediction was not successful by
bagging QTL models and resulted in no significant predic-
tion accuracies. This result was unsurprising given the allelic
series observed at loci during family-nested QTL mapping.
In contrast to between-family PHT prediction by QTL, pre-
diction of PHT by GBLUP between families was often suc-
cessful, albeit with limited prediction accuracies ranging
from no accuracy to explaining 38% of variation in the pre-
dicted family (Figure 7).

In conclusion, the molecular mechanics of natural
PHT variation remain difficult to disentangle and it seems
unlikely that the rapid systematic elucidation of a causal
model for the genetic architecture of this variation is
possible. Yet, our results show multiple plausible models
exist to explain natural variation in maize plant height.
These vary from the highly polygenic models bearing small
allelic effects, such as GBLUP, to joint-linkage QTL and
GWAS models bearing larger effects and lower polygenicity.
While the more polygenic GBLUP model provided an
improved approach to predicting PHT and did not overfit
the calibration population as much as bagging family-nested
QTL models, we have also shown one of the most robust loci
among the family-nested QTL models could be empirically
validated in NILs and genes implicated in canonical PHT
hormonal pathways like brassinosteroid-deficient dwarfl,

Figure 6 Prediction of PHT across RIL families and within the NCRPIS diversity panel. A random sample of 20, 40, 60, and 80% of RILs in all NAM
families calibrated GBLUP and family-nested QTL models to predict PHT variation of RILs not employed in calibration (A). All RILs were used to calibrate
GBLUP and family-nested QTL models to explain their PHT variation (B). In the IBM family, random samples of RILs calibrated GBLUP and QTL models to
predict PHT variation of the remaining RILs (C). All RiLs in the IBM family were used to calibrate GBLUP and QTL models to explain PHT variation (D).
Random samples of inbreds in the NCRPIS diversity panel calibrated GBLUP models to predict PHT variation of inbreds not employed in calibration (E). All
inbreds in the NCRPIS diversity panel were used to calibrate a GBLUP model to explain their PHT variation (F). Similar levels of prediction accuracy were

observed in GBLUP for EHT, DTA, and NPH (Figure S6).
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anatory ability of GBLUP within family (main diagonal) and prediction accuracy

of models calibrated from one family and used to predict another were assessed (off diagonal). The nonparanthetical number of each off-diagonal

element details the prediction accuracy of that row’s family when used to
accuracy of that column’s family when used to predict that row's fami
clustering of their between-family prediction profiles across the families.

dwarf plantl, and semi-dwarf2 colocalized with robust loci
in our analyses. Two decades before Francis Galton’s studies
of human height based upon the resemblance between rel-
atives (Galton 1886; Visscher et al. 2010), Mendel used PHT
to establish our understanding of the laws of inheritance
(Mendel 1866). Even in this postgenomic era, PHT remains
exemplary in advancing our understanding of genetic

1354 J. A. Peiffer et al.

predict that column’s family. The number in parentheses details the prediction
ly. Families are denoted by their unshared parent and ordered based upon

causality and evaluating approaches to explain the variation
of a highly heritable, yet highly complex polygenic trait.
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