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Abstract	
Repetitive	 sequences	 have	 been	 used	 for	 DNA	

fingerprinting	 and	 genotyping	 for	 more	 than	 a	 quarter	
century.	 	 	 Now,	 with	 our	 knowledge	 of	 whole	 genome	
sequences,	 repetitive	 sequences	 can	 be	 used	 to	 identify	
polymorphisms	 that	 can	 be	 mapped	 and	 scored	 in	 a	
systematic	 manner.	 	 We	 have	 developed	 a	 simple,	 robust	
platform	 for	 designing	 primers,	 PCR	 amplification,	 and	 high	
throughput	 cloning	 that	 allows	 hundreds	 to	 thousands	 of	
markers	to	be	scored	for	less	than	$5	per	sample.		Conserved	
regions	 were	 used	 to	 design	 PCR	 primers	 for	 amplifying	
thousands	 of	 middle	 repetitive	 regions	 of	 the	 maize	 	 (Zea	
mays	 ssp.	 mays)	 genome.	 	 Bioinformatic	 scans	 were	 then	
used	 to	 identify	 DNA	 sequence	 polymorphisms	 in	 the	 low	
copy	intervening	sequences.		When	used	in	conjunction	with	
simple	DNA	preps,	optimized	PCR	conditions,	high	multiplex	
Illumina	indexing	and	a	bioinformatic	marker	calling	platform	
tailored	for	repetitive	sequences,	this	methodology	provides	
a	 cost	 effective	 genotyping	 strategy	 for	 large-scale	 genomic	
selection	projects.		We	show	detailed	results	from	four	maize	
primer	 sets	 that	 produced	 between	 1,335-3,225	 good	
coverage	loci	with	1056	that	segregated	appropriately	in	a	bi-
parental	family.		This	approach	could	have	wide	applicability	
to	 breeding	 and	 conservation	 biology,	 where	 hundreds	 of	
thousands	of	samples	need	to	be	genotyped	for	very	minimal	
cost.	

	

Introduction	
Genomics	 has	 revolutionized	 our	 understanding	 of	

the	 genetic	 architecture	 of	 organisms,	 evolution,	 and	
molecular	mechanisms.	 	On	the	applied	side,	the	simple	use	
of	 genomic	 profiling	 of	 natural	 variation	 has	 revolutionized	
animal	and	plant	breeding	 in	the	 last	decade	[1,2].	Genomic	
selection,	 a	 type	 of	 marker-assisted	 breeding	 where	 all	

quantitative	trait	loci	(QTL)	are	in	linkage	disequilibrium	with	
genome-wide	markers,	has	been	most	successfully	applied	to	
organisms	 that	 are	 expensive	 to	 phenotype	 (e.g.	 cattle)	 or	
where	custom	genotyping	platforms	could	drive	accelerated	
breeding	 cycles	 (e.g.	maize).	 Despite	 this	 progress,	 genomic	
selection’s	 greatest	 gains	 are	 likely	 still	 to	 come.	 	 There	are	
tremendous	 opportunities	 to	 apply	 genomic	 selection	 to	
thousands	 of	 animal	 and	 crop	 efforts,	 forests	 trees,	 and	
aquaculture	 systems,	 where	 relatively	 little	 selection	 and	
modern	breeding	techniques	have	not	been	applied.		Similar	
opportunities	 are	 available	 to	 conservation	 biology,	 where	
thousands	 of	 organisms	 need	 to	 be	 genotyped,	 but	 the	
resources	are	rarely	available	for	a	focused	effort	in	any	one	
species.	

The	 goal	 of	 this	 research	 was	 to	 develop	 a	
genotyping	assay	that	could	be	applied	to	most	species,	use	
low	 quality	 DNA,	 generate	 several	 hundred	 to	 a	 few	
thousand	 markers	 that	 would	 facilitate	 whole	 genome	
imputation,	 and	 eventually	 cost	 less	 than	 $2	 per	 sample.		
Most	of	the	current	technologies	do	not	provide	this	level	of	
performance	 and	 adaptability	 to	 diverse	 molecular	 lab	
facilities,	 where	 the	 next	 generation	 of	 species	 are	 being	
studied.		To	create	a	robust,	simple	protocol,	we	combine	the	
30	 year-old	 concepts	 of	 PCR-amplifying	 and	 genotyping	
repetitive	 sequences	 with	 next-generation	 sequencing	 to	
make	a	simple	assay.	

Restriction	enzyme-based	genotyping-by-sequencing	
(GBS)	has	had	tremendous	impact	over	the	last	16	years	[3–
6].		The-	key	impact	was	providing	a	reduced	representation	
library	 that	 focuses	 sequencing	 on	 a	modest	 portion	 of	 the	
genome,	 and	 these	 approaches	 could	 be	 applied	 to	 any	
species	 without	 any	 prior	 knowledge	 of	 the	 genome.		
However,	 there	 are	 two	 main	 limitations	 that	 have	 been	
observed	with	restriction	enzyme-mediated	GBS:	

(1) 	High	 quality	 DNA	 is	 generally	 needed	 to	 efficiently	
use	restriction	enzymes,	which	adds	substantially	to	
the	 cost,	 time,	 and	 effort	 necessary	 for	 the	 entire	
genotyping	process.		This	has	been	a	serious	obstacle	
in	 plant	 breeding,	where	100,000s	of	 samples	need	
to	be	processed	rapidly.		To	address	the	DNA	quality	
issue,	 we	 have	 shifted	 the	 first	 step	 of	 the	
genotyping	assay	to	standard,	exponential	PCR.		The	
amplification	 conditions	 and	 polymerases	 used	 in	
PCR	have	become	quite	robust	to	DNA	contaminants	
and	have	always	been	very	sensitive.	

(2) Whenever	 PCR	 encounters	 thousands	 of	
heterogenous	 amplicons,	 there	 is	 PCR	 competition	
between	 the	 various	 amplicons.	 	 Amplicon	 lengths,	
GC	 contents,	 and	 hairpin	 structures	 all	 combine	 to	
determine	 the	 efficiency	 of	 amplification.	 	 In	 the	
case	of	restriction	GBS,	the	PCR	competition	had	the	
positive	benefit	of	naturally	providing	size	selection.		
However,	 competition	 also	 produces	 unequal	
coverage	 between	 various	 amplicons,	which	 results	
in	 a	 large	 proportion	 of	 scoring	 dropouts.	 	 These	
dropouts	 can	make	 scoring	 heterozygous	 loci	more	
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difficult.	 	Linear	amplification	provides	a	mechanism	
to	 reduce	 this	 variability	 [7],	 however,	 another	
option	 is	 to	 focus	 on	 the	 naturally	 repetitive	
sequences	 in	a	genome.	 	By	targeting	the	repetitive	
fraction	 of	 the	 genome,	 the	 sequences	 are	 nearly	
identical	 in	 length	 and	 composition,	 which	 reduces	
competition	issues.			

	
	 Amplicon	sequencing	has	become	an	alternative	that	
is	certainly	very	capable	of	simultaneously	genotyping	10s	to	
100s	of	markers.		While	amplicon	sequencing	approaches	are	
nearly	 as	 old	 as	 PCR,	 the	 throughput	 of	 next-generation	
sequencers	 is	allowing	 these	methods	 to	become	quite	cost	
effective,	e.g.	AmpSeq	[8].		The	limitation	of	this	approach	is	
generally	the	prior	knowledge	of	numerous	SNPs,	essentially	
a	 HapMap,	 and	 there	 can	 be	 amplicon	 bias	 and	 primer	
competition	 that	 prevents	 a	 few	 thousand	 markers	 from	
being	 multiplexed	 without	 extensive	 optimization.	 	 In	 this	
study,	 we	 focus	 amplicon	 sequencing	 at	 the	 repetitive	
fraction	of	the	genome	-	essentially	AmpSeq	with	one	or	few	
primer	pairs.	

Genotyping	 the	 repetitive	 fraction	 of	 a	 genome	 is	
actually	 one	 of	 the	 oldest	 approaches	 to	 genotyping,	 as	
initially	these	regions	were	well	characterized	and	were	easy	
to	 clone.	 Ribosomal	 sequences	 have	 been	 a	 target	 for	
studying	 inter-	 and	 intra-species	 phylogenetics	 for	 three	
decades	 [9].	 	 The	 key	 design	 for	 genotyping-by-sequencing	
with	 ribosomal	 sequences	 was	 designing	 primers	 on	 the	
conserved	 regions	 of	 the	 ribosomal	 sequences	 (26S,	 5.8S,	
and	 18S)	 that	 span	 the	 less	 conserved	 internal	 transcribed	
spacers	 (ITS).	 	 Intra-individual	 and	 intra-populational	
variation	among	thousands	of	ribosomal	repeats	was	scored	
using	Sanger	sequencing	of	 these	regions	 [10–12],	and	used	
for	evolutionary	and	population	genetics.		Similarly,	in	human	
genetics	 the	 repetitive	MHC	 loci	have	have	been	genotyped	
through	 PCR	 amplification,	 cloning,	 and	 sequencing	 [13].			
The	sequencing	of	repetitive	sequences	has	also	given	rise	to	
the	 entire	 field	 of	 metagenomics,	 where	 ribosomal	 repeat	
sequencing	 is	 used	 to	 identify	 the	 trillions	 of	 organisms	
present	everywhere.	

For	 the	 last	 three	 decades,	 it	 has	 been	 clear	 that	
transposons	 dominate	 the	 genomes	 of	 most	 higher	
eukaryotes.	 	 Once	 this	 was	 realized,	 transposable	 elements		
became	 targets	 for	 genotyping	 [14].	 	 Transposon	 display	
moved	 this	 type	 of	 genotyping	 to	 repetitive	 elements	 that	
were	evenly	spread	across	the	genome	[15].			Genotyping	by	
scoring	random	regions	between	the	conserved	elements	of	
transposons	was	also	used	[16].			
	 The	main	limitation	of	using	repetitive	sequences	for	
intraspecific	genotyping	has	been	that	the	length	and	quality	
of	 DNA	 sequencing	 needs	 to	 be	 sufficient	 to	 differentiate	
closely	 homologous	 sequences.	 	 This	 was	 possible	 with	
Sanger	 sequencing	 by	 1990,	 and	 then	 long	 read	
pyrosequencing,	 but	 until	 recently	 sequencing	 by	 synthesis	
(SBS)	 approaches	 did	 not	 provide	 the	 length	 and	 quality	
necessary	 to	 differentiate	 closely	 repetitive	 sequences.		

Modern	SBS	sequencers	have	essentially	solved	this	problem,	
where	high	quality	150bp	sequences,	with	or	without	paired-
end	 reads,	 can	 clearly	 differentiate	 among	 close	 homologs.		
While	 repetitive	 sequences	 are	 highly	 homologous,	 it	 is	
common	 to	 find	 families	 that	 are	 only	 80-90%	 identical	 for	
portions	 of	 the	 sequences.	 	 With	 150	 bp	 reads,	 15	 to	 30	
single	nucleotide	changes	that	differentiate	a	pair	of	paralogs	
may	be	obtained.	
	 Here,	 we	 combine	 novel	 bioinformatics	 to	 identify	
genotyping	 targets	 and	 marker	 scoring	 with	 standard	
amplification	 and	 Illumina-based	 sequencing	 to	 generate	 a	
robust	genotyping	platform	that	we	call	rAmpSeq	for	repeat	
Amplification	Sequencing.			

We	have	designed	the	assay	in	a	way	to	address	the	
problems	with	restriction	enzyme-based	GBS.	 	The	design	of	
rAmpSeq	does	sacrifice	three	of	the	strengths	of	GBS:	 	 (1)	 It	
will	produce	fewer	markers	in	general	-	often	on	an	order	of	
magnitude	 less.	 (2)	 Knowledge	 of	 the	 reference	 genome	
sequence	 is	 necessary	 to	 design	 a	 quality	 assay.	 	 (3)	 GBS	
markers	were	frequently	focused	near	genes,	while	rAmpSeq	
generally	 is	 targeting	 intergenic	 regions.	 	We	 believe	 these	
are	 reasonable	 sacrifices	 as	 long	 read	 sequencing	
technologies	have	advanced	tremendously	so	that	numerous	
species	have	quality	genomes.	 	Second,	 low	coverage	whole	
genome	 sequencing	 is	 becoming	 very	 inexpensive	 -	 on	 the	
order	 $50-250	 per	 genome.	 	 When	 combined	 with	
imputation,	 however,	 only	 a	 small	 proportion	 of	 samples	
need	to	be	sequenced	at	high	coverage.	

We	 evaluate	 the	 power	 of	 rAmpSeq	 by	 genotyping	
maize,	where	we	demonstrate	primer	design	approaches	and	
considerations,	 evaluate	 sensitivity	 to	 DNA	 concentration	
and	 quality,	 library	 coverage	 and	 distribution,	 and	 then	
genotyping	with	 both	 orthologs	 and	 tightly	 linked	 paralogs.		
Finally,	 we	 discuss	 how	 this	 methodology	 can	 become	 a	
highly	distributed	protocol	that	can	cost	$2	per	sample	and	is	
capable	of	 delivering	 the	 genomics	 revolution	 to	 all	 corners	
of	 breeding	 and	 conservation	 biology,	 including	 resource-	
and	 infrastructure-limited	 institutions	 in	 the	 developing	
world.	

Methods	and	Results	
	

Plant	materials	and	DNA	extraction	
PCR	 optimization	 and	 preliminary	 sequencing	 were	

performed	using	 	maize	 inbred	lines	B73,	CML247,	W22	and	
Mo17.	 	 Further	 genotyping	 was	 then	 performed	 on	 the	
parents	 and	 48	 progeny	 from	 a	 recombinant	 inbred	
population,	 (B73	 X	 CML	 247)F6	 	 [17]	 and	 	 48	 diverse	maize	
inbreds	 from	 the	 USDA-ARS	 National	 Plant	 Germplasm	
System	 (Table	 1).	 	 DNAs	 from	 lyophilized	 leaf	 tissues	 were	
extracted,	by	using	either	a	column-based	(DNeasy,	QIAGEN,	
Inc;	Valencia,	CA)	or	a	standard	CTAB	protocol	[18].	
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Primer	design	
Using	 the	 genome	 indexing	 approach	 integrated	 in	

the	 TASSEL	 pipeline	 (	 version	 5;	
http://www.maizegenetics.net/tassel;	 [19]),	 we	 catalogued	
all	20	bp	kmers	with	1000	to	2000	copies	and	selected	kmer	
pairs	with	 at	 least	 90%	 similarity	 in	GC	 content	 (35%<	GC	<	
65%),	3bp	of	GC-clamp	on	the	3’	end,	and	separation	of	125	

to	200	bp.	The	kmers	were	also	 selected	 for	 relatively	even	
distribution	across	the	genome	by	testing	for	presence	in	40	
genomic	bins.	 	The	top	5000	of	 these	potential	primer	pairs	
were	ranked	such	that	standard	deviation	in	amplicon	length	
was	minimized	and	sequence	divergence	between	amplicons	
was	maximized.	 	 These	5000	primer	pairs	were	 then	 scored	
with	 Primer	 3.0	 [20],	 and	 the	 top	 10	 primer	 pairs	 coming	
from	 four	different	 repeat	 classes	were	 selected	 for	 further	
evaluation	(Table	2).	
	

	

PCR	optimization	
Preliminary	 PCRs	 were	 performed	 in	 25μL	 volumes	

containing	 100	 ng	 genomic	 DNA	 (from	 each	 of	 four	 maize	
inbred	 lines),	1X	Taq	master	mix	 (New	England	Biolabs,	 Inc.,	
Ipswich,	 MA)	 and	 10	 pmol	 of	 each	 primer.	 	 Standard	 PCR	
cycling	conditions	consisted	of	1X	98⁰C/30	s;	25X	(98⁰C/20	s,	
56⁰C/30	s,	72⁰C/30	s);	followed	by	a	final	cycle	at	72⁰C/5	min.			
A	modified	cycling	protocol	designed	 to	 reduce	competition	
between	PCR	artifacts	and	the	desired	amplicons,	(98⁰C/30	s;	
2X	(98⁰C/20	s,	56⁰C/30	s,	72⁰C/30	s),	12X	(98⁰C/20	s,	58⁰C/30	
s,	72⁰C/30	s);	1X	(98⁰C/20	s,	58⁰C/2	min	with	1⁰C	increase/5	
sec,	72⁰C/30	s),	1	cycle	72⁰C/5	min)	was	also	evaluated.	

To	 test	 the	 limits	 of	 the	 protocol,	 15	 to	 25	 cycle	
standard	PCRs	were	performed	with	varying	amounts	of	DNA	
template	 (five-fold	 dilutions	 ranging	 from	 100	 ng	 to	 120	
picograms	of	high	quality	DNA	and	100	ng	of	“poor	quality”	
DNA).			Amplification	products	were	purified	on	QIAquick	PCR	
purification	 columns	 according	 to	 the	 manufacturer’s	
instructions	 (QIAGEN,	 Inc.,	 Valencia,	 CA),	 eluted	 in	 25	 μL	
volumes	 and	 assayed	 (2μL)	 on	 an	 Experion™	 automated	

electrophoresis	station	using	the	Experion	15–1,500	bp	DNA	
Analysis	 Kit	 (Bio-Rad	 Laboratories,	 Inc.,	 Hercules,	 CA).	 Gel	
images	 were	 automatically	 processed	 using	 the	 included	
instrument	software.	

Initial	results	indicated	that	the	ten	rAmpSeq	primer	
pairs	 amplified	 robustly,	 producing	 measurable	 products	
from	 small	 amounts	 (a	 few	 hundred	 picograms)	 of	 purified	
input	DNA	and	degraded,	unpurified	DNA	samples	 (Figure	1	

Table	1.		Diverse	maize	inbred	lines.	
	

Accession	
Name	

GRIN*	
Identifier	

Accession	
Name	

GRIN	
Identifier	

Accession	
Name	

GRIN	
Identifier	

A188	 Ames	22443	 DE2	 PI	606330	 NC290A	 Ames	27141	

A239	 Ames	23405	 EP1	 Ames	27111	 NC320	 Ames	27156	

A441-5	 Ames	27064	 F6	 NSL	22894	 NC356	 Ames	27174	

A654	 PI	587141	 I137TN	 Ames	27116	 ND246	 PI	550490	

B77	 PI	608765	 I29	 Ames	27115	 Oh43E	 Ames	27183	

CH701-30	 Ames	27069	 Ky21	 Ames	27130	 Oh603	 PI	573098	

CI	7	 Ames	28367	 L317	 NSL	65873	 P39	 Ames	28186	

CI	3A	 Ames	26116	 M14	 NSL	30867	 R109B	 NSL	242484	

CI	64	 Ames	19314	 Mo17	 PI	648430	 R168	 NSL	30891	

CM174	 Ames	19316	 Mo18W	 PI	550441	 SC	213R	 NSL	53083	

CML	108	 Ames	27082	 Mo47	 PI	583352	 SG	18	 NSL	75979	

CML	220	 Ames	27087	 MS1334	 Ames	24752	 Tzi	25	 PI	506255	

CML	228	 Ames	27088	 N6	 Ames	27137	 U267Y	 Ames	27191	

CML	281	 Ames	27092	 NC230	 Ames	12731	 Va35	 PI	587150	

CML	287	 PI	595565	 NC232	 Ames	12732	 W22	 PI	674445	

CO106	 Ames	27105	 NC250	 PI	550555	 WD	 Ames	27195	

	
Figure	1.	Template	titration	and	PCR	effects	for	rAmpSeq	locus	4.1.			
Template	titration	experiment	(A)	and	the	effect	of	PCR	cycle	number	and	slow	annealing	on	PCR	competition	(B).	
In	A,	lanes	1-5	contain	amplification	products	from	standard,	20	cycle	PCRs	using	100	ng,	20	ng,	4	ng,	800	pg	and	
160	pg	DNA	from	accession	B73	as	template,	respectively.		Lane	6	contains	amplification	products	from	a	
degraded,	unpurified	DNA	sample	(100	ng)	from	a	standard,	25	cycle	PCR.	In	B,		100	ng	of	DNA	from	accession	B73	
was	used	as	template	in	all	PCRs.		Lane	1,	standard	20	cycle	PCR;	Lane	2,		20	cycle	PCR	with	slow	primer	annealing	
step;	Lane	3,	standard	15	cycle	PCR;	Lane	4,		15	cycle	PCR	with	slow	primer	annealing	step.	In	all	cases,	the	
expected	product	size	is	approximately	196	bp.	Pink	triangles	mark	the	position	of	the	15	bp	size	standards,	both	in	
the	ladder	and	internal	standards	added	to	each	DNA	sample.	

	

Table	2.		rAmpSeq	primer	pairs	evaluated.	
Primer	Pair	 Forward	primer	(5’	-	3’)	 Reverse	primer	(5’	-	3’)	

1.1	 AGCTCGACGTGGAAACATTC	 TTGACGGACGTCTCGACCTA	

1.2*	 CCCTAGCTCGACGTGGAAAC	 TTGACGGACGTCTCGACCTA	

1.3	 TTGACGGACGTCTCGACCTA	 AGCTCGACGTGGAAACATTC 	

2.1	 TCTAGGGGGTCTCGACGAAG	 GCACAAGTTGTCCTGCTTCC	

2.2	 CTAGGGGGTCTCGACGAAGG	 GCACAAGTTGTCCTGCTTCC	

2.3	 GCACAAGTTGTCCTGCTTCC	 CACGTCGATCTAGGGGGTCT	

2.4*	 GCACAAGTTGTCCTGCTTCC	 ACGTCGATCTAGGGGGTCTC	

3.1*	 CCATGGTCATCCCTCGCTCT	 CCACACCCACTACTGGTCAG	

3.2	 CCACACCCACTACTGGTCAG	 CCATGGTCATCCCTCGCTCT	

4.1*	 GGTCTTGAAGTCCAGGAGGA	 AGGGTTGGCTAGCAAAGAGC	
*	Primer	pairs	selected	for	sequencing	in	maize	inbreds	
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A).			All	primers	produced	a	band	of	the	predicted	size,	based	
on	 the	 reference	 sequence,	 along	 with	 slightly	 larger	 (<	 50	
bp)	 amplification	 products.	 	 The	 higher	 molecular	 weight	
fragments,	likely	the	result	of	competition	between	correctly	
primed	 sites	 and	PCR	artifacts,	were	minimized	by	 reducing	
the	 number	 of	 PCR	 cycles,	 slightly	 increasing	 the	 annealing	
temperature	and	using	a	 slow	“up	 ramp”	 from	annealing	 to	
the	PCR	extension	temperature	in	the	last	PCR	cycle	(Figure	1	
B).	
	

Barcoding	and	DNA	sequencing	
Loci	1.2,	2.4,	3.1	and	4.1	(Table	2),	were	selected	for	

tailed	 amplicon	 sequencing	 in	 four	 maize	 inbred	 lines	 (16-
plex).	 	 After	 initial	 results	 were	 evaluated,	 sequencing	 was	
repeated	 in	 a	 larger	 population	 (n=96)	 comprising	 both	
recombinant	 inbred	 lines	 	 and	 a	 panel	 of	 diverse	 inbreds		
(384-plex).	 	 	 For	 compatibility	 with	 the	 Nextera	 indexing	
system	 (Illumina,	 Inc.,	 San	 Diego,	 CA),	 additional	 sequences	
were	 added	 to	 the	 5’	 ends	 of	 the	 forward	
(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG)	 and	 reverse	
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG)	 primers	 for	
each	 locus.	 	 After	 performing	 the	 initial	 PCRs,	 as	 in	 the	
modified	 PCR	 protocol	 above,	 dual	 indexes	 were	 added	 to	
the	 individual	 amplification	 products	 according	 to	 the	
Nextera	 kit	 manufacturer’s	 instructions	 (Illumina,	 Inc.,	 San	
Diego,	CA).	 	DNAs	(5μL	each)	from	individual	reactions	were	
pooled,	 cleaned	 using	 polyethylene	 glycol-coated	 magnetic	
beads	(Agilent	Technologies,	Inc.,	Santa	Clara,	CA),	quantified	
and	 assayed	 on	 a	 BioAnalyzer	 (Agilent	 Technologies,	 Inc.,	
Santa	 Clara,	 CA).	 	 	 The	 four	 96-plex	 libraries	 were	 then	
combined	 in	 equal	 concentrations	 (2	 nM	 each)	 and	
sequences	(paired-end,	250	nucleotides)	were	collected	on	a	
MiSeq	 instrument	 using	 version	 2	 chemistry	 (RTA	 version	
1.18.54;	 Illumina,	 Inc.,	 San	 Diego,	 CA).	 	 To	 increase	 library	
complexity,	 phiX	 DNA	 (5%)	was	 added	 to	 both	 the	 16-	 and	
384-plex	 libraries	 prior	 to	 sequencing.	 Sequencing	 results	
were	 converted	 to	 FASTQ	 format,	 evaluated	 for	 overall	
sequencing	 quality,	 and	 demultiplexed	 using	 Illumina	
bcl2fastq2	 software	 (version	 2.17;	 Illumina,	 Inc.,	 San	 Diego,	
CA).	

Sequence	processing	
Demultiplexed,	barcode-free	sequences	(reads)	were	

processed	using	a	custom	pipeline.	The	code	used	in	this	and	
all	 subsequent	 analysis	 is	 available	 in	 a	 public	 repository	
(URL:	;	DOI:	).	In	brief,	the	raw	forward	reads	for	each	sample	
were	 randomly	 downsampled	 to	 at	 most	 200,000	 reads	 in	
order	 to	 simulate	 a	 typical	 rAmpSeq	 run,	 and	 all	 sequences	
that	did	not	pass	Illumina	quality	control	were	removed.	The	
remaining	sequences	were	trimmed	to	the	first	150	bp,		and	
reverse	 Illumina	 Nextera	 sequences	
(CTGTCTCTTATACACATCTCCGAGCCCACGAGAC)	 were	 removed	
using	 Cutadapt	 (version	 1.10;	
https://github.com/marcelm/cutadapt;	[21])	with	the	default	
10%	 maximum	 mismatch	 tolerance.	 Cutadapt	 was	 further	

used	to	remove	the	5’	PCR	primer	sequence	(20%	maximum	
mismatch	 tolerance,	 5’	 anchored	 sequence)	 and	 any	 3’	
sequence	 that	 followed	 the	 3’	 PCR	 primer	 sequence,	
including	 the	 primer	 sequence	 itself	 (no	mismatch	 allowed,	
unanchored	 3’	 sequence).	 Only	 sequences	 where	 the	
expected	 5’	 PCR	primer	 sequence	was	 found	were	 retained	
for	further	analysis,	with	both	pairs	required	to	pass	this	filter	
in	 the	 paired	 end	 analysis.	 Finally,	 low	 quality	 bases	 were	
removed	 from	 the	3’	 end	using	a	quality	 value	 threshold	of	
25,	and	any	sequences	shorter	than	100	bp	were	discarded.	

For	 each	 primer	 pair	 and	 sample	 combination	 we	
retained	an	 average	of	 87%	of	 the	 reads	 after	 filtering,	 and	
we	were	able	to	 identify	the	expected	PCR	primer	sequence	
in	over	99%	of	the	reads	that	passed	Illumina	quality	control	
(Table	 3).	 Detailed	 statistics	 of	 the	 filtering	 process	 are	
available	as	supplemental	material	(Table	S2).	
	

Alignment	to	the	reference	genome	
Reads	from	the	B73	sample	were	aligned	against	the	

maize	reference	genome	(AGP	v3,	EnsemblGenomes	release	
31;	 [22])	 using	 bwa-mem	 (version	 0.7.12-r1039;	
https://github.com/lh3/bwa;	 [23])	 with	 the	 following	
parameters:	-M	-c	100000	-L	5,5	-T	0.	The	resulting	alignment	
file	 was	 further	 filtered	 using	 SAMtools	 (version	 1.3.1;	
https://github.com/samtools/;	[24]),	and	tags	having	primary	
alignments	 (SAMtools	 flag	 -F	 0xf0c)	with	 no	mismatches	 on	
the	 ten	 maize	 chromosomes	 were	 retained.	 They	 were	
further	filtered	to	remove	those	with	ambiguous	alignments,	
define	 as	 having	 a	 secondary	 alignment	 with	 the	 same	
alignment	score	as	the	primary	alignment.	Alignment	results	
were	 processed	 with	 BEDTools	 (version	 2.25.0;	
https://github.com/arq5x/bedtools2;	 [25])	 to	 merge	
overlapping	 alignment	 locations	 on	 the	 same	 strand	 and	
Table	4.	Read	alignments	for	sample	B73	
Primer	
Pair	

Number	
of	

Reads	

Read	Alignment	(%	of	Reads)*	 	 Genomic	Loci**	

Aligned	 Primary	
Chromo
somes	

Perfect	
Match	

Unambi
guous	

	 Distinct	
Loci	

Depth	≥	
10	Reads	

Interlocus	Distance	(Kb)	

	 Mean	 Median	

1.2	 165,505	 99.99	 99.85	 61.14	 43.08	 	 7,489	 3,225	 142	 96	

2.4	 164,242	 100	 99.55	 63.10	 56.96	 	 2,422	 1,901	 424	 286	

3.1	 147,336	 99.99	 99.76	 60.49	 33.89	 	 5,610	 1,891	 186	 125	

4.1	 172,066	 100	 99.81	 57.99	 26.58	 	 1,573	 1,353	 670	 438	
*	Order	of	filters	is	left	to	right;	only	reads	passing	all	preceding	filters	are	evaluated	for	the	percentage	
calculation.	
**	Order	of	filters	is	left	to	right;	only	loci	passing	all	preceding	filters	are	evaluated	for	locus	counts.	

	

Table	3.	Read	filtering	results,	average	values	
Primer	Pair	 Retained	Reads	(%)	 Removed	Reads	(%)*	

Failed	Illumina	QC	 No	Primer	
Sequence	

Length	≤	100	bp	

1.2	 86.38	 13.22	 0.04	 0.05	

2.4	 88.07	 9.82	 0.14	 1.94	

3.1	 83.06	 12.40	 0.36	 4.09	

4.1	 89.67	 9.54	 0.33	 0.05	
*	Order	of	read	removal	filters	is	left	to	right;	reads	removed	by	a	preceding	filter	are	not	considered	in	
subsequent	filters.	
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calculate	read	depth	and	average	alignment	quality	for	each	
alignment	locus	in	the	genome.	
We	 estimated	 the	 number	 of	 loci	 amplified	 by	 each	
sequenced	 primer	 pair	 by	 aligning	 the	 reads	 from	 the	 B73	
sample	 against	 the	 maize	 reference	 genome,	 which	 is	
constructed	 from	 the	 same	 inbred	 line.	 For	all	 primer	pairs,	
over	99%	of	the	reads	aligned	to	the	sequences	representing	
the	ten	maize	chromosomes,	and	27-57%	of	the	reads	were	
aligned	with	no	mismatches	to	a	single	locus	(Table	4).	Nearly	
40%	 of	 the	 reads	 did	 not	 match	 perfectly	 to	 a	 genomic	
location,	 and	 the	 vast	majority	 of	 these	 are	 likely	 to	be	 the	
result	of	sequencing	errors	and	incomplete	genome.		At	this	
early	 stage	 of	 the	 bioinformatics,	 we	 have	 chosen	 to	
disregard	 these	 tags,	 but	 they	 could	 obviously	 be	
incorporated	in	most	sophisticated	pipelines.		

For	 the	 sequences	 with	 perfect	 matches,	 46%	
(primer	 pair	 4.1)	 to	 90%	 (primer	 pair	 2.4)	 were	 in	
unambiguous	 locations	 in	 the	 genome.	 	 The	 in	 silico	primer	
selection	 algorithm	 had	 predicted	 that	 we	 would	 have	 had	
80%	(primer	pair	4.1)	to	95%	(primer	pair	2.4)	uniqueness,	so	
while	 the	 bioinformatics	 was	 a	 useful	 guide,	 it	 is	 clear	 that	
some	primers	are	either	amplifying	non-target	sequences	or	
the	 reference	 genome	 is	 missing	 substantial	 numbers	 of	
copies	 for	 certain	 elements.	 Figure	 3	 clearly	 shows	 a	
secondary	 lower	 depth	 peak	 for	 primers	 pairs	 4.1	 and	 3.1	
suggesting	off-target	amplification.	Primer	pair	4.1	also	has	a	
long	high-depth	 tail,	 suggesting	multiple	 identical	 loci.	Exact	
coordinates	for	all	loci	are	provided	in	supplemental	files	S3-
S6,	 and	 a	 summary	 of	 locus	 distribution	 across	 the	 maize	
genome	 and	 gene	 space	 for	 primer	 pair	 2.4	 is	 presented	 in	
Figure	2.	

Tag-based	analysis	
Primer	pair	evaluation	

The	 processed	 reads	 were	 further	 trimmed	 to	 the	
longest	 informative	 sequence	 expected	 for	 a	 given	 primer	
pair	 (130	 bp	 for	 primer	 pairs	 1.2,	 2.4,	 and	 4.1;	 120	 bp	 for	
primer	pair	3.1),	and	only	full	length	reads	were	retained	for	
further	analysis.	For	each	sample	and	primer	pair,	 the	reads	
were	 collapsed	 into	 distinct	 sequences	 (sequence	 tags)	 and	
the	 depth	 of	 sequencing	 for	 each	 tag	 was	 recorded.	 We	
evaluated	 the	 tags’	 read	 depth	 distribution	 for	 each	 of	 the	
four	deeply	sequenced	samples	(B73,	CML247,	W22,	Mo17),	
and	 selected	 primer	 pair	 2.4	 for	 further	 analysis	 (see	
Discussion).	 Sequence	 tags	 were	 further	 filtered	 based	 on	
read	 depth.	 Any	 tags	 with	 a	 read	 depth	 less	 than	 10	 were	
discarded	 in	 order	 to	 remove	 likely	 sequencing	 and	 PCR	
artefacts,	 and	 the	 10%	 most	 deeply	 sequenced	 tags	 were	
discarded	 in	 order	 to	 remove	 likely	multi-locus	 tags	 (Figure	
3).	

	
	
Pairwise	divergence	estimates	

Pairwise	similarity	between	sequence	tags	from	the	
B73	sample	was	evaluated	using	the	k-tuple	measure	[26]	as	
implemented	in	the	Clustal	Omega	software	(version	1.2.1;	
[27])	and	results	for	primer	pair	2.4	are	presented	in	Figure	4.	
This	highlights	that	while	repetitive	elements	are	
similar	they	are	far	from	identical	with	an	average	of	
10%	divergence. 

	

	
	
Figure	2.	Alignment	locus	distribution	across	the	maize	genome	and	gene	space	
Alignment	locus	counts	per	Mb	are	presented	as	upwards	black	vertical	bars	with	longer	bars	representing	higher	
locus	density,	and	range	between	1	and	5	loci	per	Mb.	Normalized	gene	model	density	is	presented	as	downwards	
gray	vertical	bars,	with	longer	bars	representing	higher	density.	Only	results	for	primer	pair	2.4	in	sample	B73	are	
presented.	

	

	
	

Figure	3.	Sequence	tag	depth	distribution	in	four	deeply	sequenced	samples	
For	each	sequence	tag,	read	depth	represents	the	number	of	reads	with	that	exact	sequence	after	quality	filtering.	
The	number	of	tags	with	read	depth	exceeding	150	reads	is	indicated	by	a	gray	number	in	the	lower	right	margin	of	
each	distribution.	The	subset	of	tags	selected	for	analysis	is	highlighted	in	black	and	indicated	by	a	labeled	orange	
bracket.	The	exact	read	depth	cutoffs	are	indicated	below	each	distribution	along	the	x	axis.	No	data	are	available	
for	primer	pair	3.1	in	sample	CML247.	
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Genotyping	of	recombinant	inbred	population	

Sequence	 tags	 amplified	 with	 primer	 pair	
2.4	 from	 the	 B73	 and	 CML247	 samples,	
representing	 parental	 genotypes	 of	 the	
recombinant	 inbred	population,	were	assessed	 for	
their	 frequency	 in	 the	 recombinant	 inbred	
population	with	the	expectation	that	each	parent’s	
tags	would	 be	 present,	 on	 average,	 in	 50%	of	 the	
progeny.	The	tag	frequency	data	was	modelled	as	a	
mixture	of	 at	most	 two	one	dimensional	Gaussian	
distributions	 with	 variable	 variance	 using	 the	
package	 Mclust	 (version	 5.2;	 https://cran.r-
project.org/web/packages/mclust;	 [28])	 for	 the	 R	
Statistical	 Computing	 Environment	 (version	 3.2.2;	
https://www.R-project.org;	[29]).	For	each	sample,	
the	 Gaussian	 distribution	 with	 the	 majority	
contribution	 was	 selected	 and	 values	 delimiting	
two	 standard	 deviations	 around	 the	 mean	 were	
used	as	the	lower	and	upper	limits	of	tag	frequency	
to	 further	 filter	 the	 sequence	 tags.	 Finally,	 only	
sequence	 tags	 specific	 to	 each	 parental	 genotype	
were	kept	for	tag-based	genotyping.	

In	 order	 to	precisely	 anchor	 the	 tags	 thus	
selected	from	the	B73	sample	on	the	physical	map,	
they	 were	 re-aligned	 against	 the	 maize	 reference	
genome	 using	 bwa-mem	 with	 the	 following	
parameters:	 -M	 -c	 100000	 -L	 500,500	 -T	 0.	 Tags	

having	 primary	 alignments	 (SAMtools	 flag	 -F	 0xf0c)	with	 no	
mismatches	 on	 the	 ten	maize	 chromosomes	 were	 retained	
and	 further	 filtered	 to	 remove	 those	 with	 ambiguous	
alignments,	define	as	having	a	secondary	alignment	with	the	
same	 alignment	 score	 as	 the	 primary	 alignment.	 The	
recombinant	 inbred	 population	 was	 genotyped	 using	 these	
B73	tags	as	dominant	markers,	with	genotype	calls	supported	
by	 less	 than	 2	 reads	 marked	 as	 unknown.	 These	 genotype	
calls	 were	 compared	 to	 the	 subset	 of	 GBS-based	 genotype	
calls	 from	 the	 Glaubitz	 et	 al.	 [30]	 data	 set	 (ZeaGBSv2.7;	
http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx
?filegroupid=4)	corresponding	to	the	same	accessions	(Figure	
5).	
	

Discussion		
The	 great	 advantage	 of	 rAmpSeq	 is	 its	 simplicity.		

The	method	 takes	 advantage	of	 today’s	 longer,	 high-quality	
SBS	 reads	and	multiplexing	strategies	 in	combination	with	a	
simple	 PCR	 amplification.	 	 This	 simplicity	 results	 in	 some	
great	benefits	-	the	cost	is	extremely	low	and	DNA	preps	are	
simple.	 	 The	 biggest	 side	 benefit	 from	 targeting	 repetitive	
sequences	is	that	reduced	PCR	amplicon	competition	results	

	
	

Figure	5.	Recombination	block	identification	in	a	recombinant	inbred	population	
Genotype	assignments	along	the	10	maize	chromosomes	are	shown	for	a	subset	of	8	samples,	with	blue	indicating	
the	B73	genotype	and	orange	indicating	the	CML247	genotype.	For	each	chromosome	by	sample	plot,	the	central	
horizontal	bar	represents	genotype	assignments	inferred	from	the	dense	GBS-based	genotyping	assay.	The	
genotype	assignments	inferred	from	the	rAmpSeq	data	are	presented	above	(CML247	genotypes)	and	below	(B73	
genotypes).	Below	each	chromosome	label,	the	number	of	tags	aligned	to	that	chromosome	and	their	physical	
location	are	indicated	in	gray	text	and	black	dashes	respectively.	Both	GBS	and	rAmpSeq	markers	are	presented	as	
dominant	B73	markers.		

	

	
	

Figure	4.	Pairwise	similarity	of	sequence	tag	markers	
Overall	distribution	of	pairwise	nucleotide	similarity	between	tags	(A)	and	heatmap	of	all	pairwise	sequence	tag	
comparison	results	(B)	from	primer	pair	2.4	in	B73.	Pairwise	comparisons	with	less	than	80%	similarity	(25	or	more	
bp	different;	1.27%	of	all	comparisons)	are	highlighted	in	cyan.	Pairwise	comparisons	with	more	than	98%	
similarity	(1	bp	different;	0.17	%	of	all	comparisons)	are	highlighted	in	black.	In	A,	vertical	lines	indicate	the	mean	
(solid)	and	median	(dashed)	values,	and	the	colored	blocks	along	the	x	axis	represent	the	heatmap	color	scale.	In	B,	
the	read	depth	for	each	tag	is	presented	in	the	right	margin	on	a	log	scale.	
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in	relatively	even	amplification	profiles.	 	Targeting	repetitive	
sequences	 works	 well	 because	 of	 the	 diverse	 biology	 and	
ecology	 of	 retrotransposons	 that	 exist	 within	 genomes.		
Today,	 a	 protocol	 like	 rAmpSeq	 is	 reasonable	 because	
ignoring	20-50%	of	data	is	cost-effective	for	genotyping	with	
current	next-generation	sequencing	throughput.	

Maize,	 like	most	plants,	 has	 a	 tremendous	diversity	
of	retrotransposons	[31,32].		It	is	not	widely	recognized	that,	
although	transposons	are	repetitive,	their	sequences	are	not	
identical.		Analysis	of	divergence	between	various	amplicons	
shows	 that	 many	 families	 that	 share	 stretches	 of	 nearly	
identical	sequence	can	have	intervening	regions	with	10-15%	
divergence	from	most	other	amplicons	(Figure	X).		Therefore,	
sequencing	reads	of	150	nucleotides	can	provide	more	than	
15	diagnostic	variants	to	differentiate	paralogs.	

There	 are	 still	 a	 number	 of	 limitations	 of	 rAmpSeq	
bioinformatics	 that	 can	 be	 greatly	 improved.	 	 The	 current	
approach	 treats	 each	 sequence	 tag	 as	 a	 unique	 dominant	
marker.	 	This	approach,	however,	does	not	capture	 the	 rich	
evolutionary	 history	 present	 in	 these	 sequences.		
Reconstructing	 an	 evolutionary	 network	 is	 relatively	
straightforward,	 but	 because	 of	 the	 substantial	 sequence	
depths	required,	PCR	and	sequencing	errors	also	need	to	be	
modeled	across	the	network.		The	UNEAK	pipeline	[33],	used	
for	calling	GBS	SNPs	in	species	that	lack	a	genome	sequence,	
builds	many	small	networks	and	identifies	a	subset	of	simple	
allelic	pairs	that	are	clearly	above	the	sequencing	error	rate.		
Because	rAmpSeq	is	focused	at	a	much	smaller	portion	of	the	
genome	 with	 much	 higher	 coverage,	 PCR	 and	 sequencing	
error	rates	can	be	modeled	for	every	nucleotide,	and	can	be	
used	to	rigorously	differentiate	homologs	from	errors.			

The	 dominant	 markers	 identified	 by	 the	 rAmpSeq	
sequence	 analysis	 presented	 here	 can	 also	 be	 converted	 to	
co-dominant	 markers	 through	 several	 strategies.	 	 First,	 as	
mentioned	 above,	 sequence	 networks	 can	 be	 used	 to	
differentiate	allelic	divergence	from	errors.		Second,	depth	of	
coverage	 at	 a	 locus	 can	 be	 a	 reliable	 signal	 for	
presence/absence.	 	 Third,	 in	 situations	 where	 mapping	
populations	 exist,	 genetics	 can	 be	 used	 to	 used	 to	 identify	
putative	 alleles	 that	 are	 then	 confirmed	 by	 sequence	
divergence.		Linkage	disequilibrium	mapping	can	also	be	used	
resolve	the	locations	of	tags	in	a	similar	manner	[34].		Finally,	
there	 are	many	 tags	 that	map	 so	 closely	 (<<1cM)	 that	 they	
essentially	 function	 as	 genetic	 alleles,	 even	 though	 detailed	
structural	 genomics	 suggests	 they	 are	 not	 at	 the	 same	
position.	 	Cursory	analyses	with	the	above	dataset	 indicated	
that	 this	 situation	 was	 common,	 and	 nearly	 all	 dominant	
alleles	 could	 be	 converted	 to	 co-dominant	 suites	 of	 alleles.		
Future	 work	 will	 formally	 convert	 these	 features	 into	 a	
probabilistic	model.	

Most	 imputation	approaches	currently	rely	on	using	
co-dominant	 markers.	 There	 is	 obviously	 substantial	
information	 content	 variation	 originating	 from	 different	
classes	 of	 repetitive	 sequences.	 	 For	 the	 maize	 samples	
analyzed	here,	 it	 appears	 that	 some	of	 the	older	 families	of	
repetitive	sequences	 (Primer	9)	produced	the	most	valuable	

profiles,	 both	 for	 mapping	 SNPs	 and	 presence/absence	
variation.	 	 	 In	 lower	 diversity	 species,	 however,	maximizing	
presence/absence	 variation	 may	 be	 most	 important,	 and,	
hence,	targeting	relatively	young	retrotransposons	would	be	
most	effective.	 	The	vast	majority	of	higher	eukaryotes	with	
genomes	 larger	 than	 500	 Mbp	 are	 likely	 to	 have	 plenty	 of	
repetitive	families	with	genome-wide	distributions.	 	 In	these	
cases,	 it	would	 be	 quite	 possible	 to	multiplex	 to	 2	 or	more	
repetitive	families	in	a	single	reaction	or	use	degenerate	PCR	
primers	to	expand	the	amplification	target	range.		While	this	
strategy	 would	 take	 some	 optimization	 to	 reduce	
competition	 between	 families,	 it	 would	 provide	 a	
straightforward	 approach	 to	 providing	 enough	 markers	 in	
small	genomes.	

The	cost	profile	of	rAmpSeq	is	very	competitive	with	
other	approaches.		At	3000-plex,	rAmpSeq	would	provide	an	
estimated	estimate	$2.30	per	sample	(Table	5).			

	

The	 greatest	 disadvantage	 of	 the	 protocol	 are	 that	
repetitive	 sequences	 are	 more	 difficult	 to	 analyze	
bioinformatically.		Both	the	initial	anchoring	of	sequences	to	
the	genome	and	differentiating		paralogs	from	orthologs	are	
particularly	challenging.		In	the	breeding	context,	where	large	
numbers	of	segregants	are	scored	from	a	cross,	these	issues	
can	all	be	sorted	out	robustly	using	genetics.		In	conservation	
biology,	sampling	of	the	offspring	from	a	few	key	mothers	or	
fathers	 of	 the	 species	 of	 interest	 prior	 to	 genotyping	 entire	
populations		could	provide	the	clear	linkage	signal	necessary	
to	 differentiate	 and	 to	 anchor	 novel	 paralogs.	 	 While	 the	
bioinformatics	 can	 be	 challenging,	 the	 TASSEL	 GBS	 pipeline	
provides	a	model	of	how	to	capture	the	species	knowledge	in	
a	 discovery	 run	 and	 database,	 which	 can	 then	 be	 shared	
across	 the	 species	and	 further	 researchers	only	use	a	 single	
step	production	run	[30].			

While	 the	 bioinformatic	 resources	 are	 not	 yet	 fully	
developed,	 rAmpSeq	 already	 has	 tremendous	 value	 in	
species	 with	 quality	 reference	 genomes.	 rAmpSeq	 also	 has	
the	 potential	 to	 be	 integrated	 with	 other	 amplicon-based	
sequencing	 approaches.	 	 For	 example,	 in	 many	 breeding	
contexts	 10	 to	 20	 functional	 loci	 are	 often	 genotyped	
regularly	to	ensure	selection	for	disease	resistance	or	quality	
traits.	 	 Combining	 these	 assays	 with	 rAmpSeq	 can	 provide	

Table	5.		Estimated	costs	for	genotyping	at	3000-plex.	
Process	 Cost/Sample	at	

3000-plex	

DNA	extraction	(CTAB)	 $			0.25	

rAmpSeq	PCR	and	sample	cleanup	 $			0.55	

Illumina	dual	index	PCR	and	sample	cleanup	 $			0.60	

DNA	sequencing	(NextSeq	500,	1X150)	 $			0.90	

Total	 $		2.30	
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the	 background	markers	 that	 are	 needed	 for	 genome-wide	
predictions	 and	 genomic	 selection.	 	 The	 primer	 titration	
necessary	 to	 optimize	 PCR	 would	 require	 some	 effort,	 but	
this	approach	would	help	provide	unambiguous	results	at	key	
functional	loci	and	near	complete	coverage	of	segregation	for	
the	rest	of	the	genome.	

The	 last	 decade	 saw	 genomics	 used	 in	 scientific	
discovery	 for	 thousands	 of	 species,	 but	 breeding	 or	
conservation	 applications	 were	 strongly	 felt	 only	 for	 a	 few	
dozen	 species.	 	 Genomic	 technologies,	 like	 rAmpSeq,	 that	
increase	ease	and	reduce	the	cost	of	genotyping	to	the	price		
of	 a	 cheap	 cup	 of	 coffee,	 help	 take	 the	 applied	 genomics	
revolution	to	all	corners	of	the	earth.			Potential	applications	
could	 be	 as	 	 diverse	 as	 breeding	 yams	 in	 Africa,	
understanding	the	migration	of	butterflies,	and	conservation	
and	adaptation	of	trees	to	climate	change.	
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