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One Sentence Summary 

HPLC-MS metabolite profiling of maize seedlings, in combination with genome-wide 

association studies, identifies numerous quantitative trait loci that influence the accumulation of 

foliar metabolites. 

 

 

 

Abstract 

Cultivated maize (Zea mays) retains much of the genetic and metabolic diversity of its wild 

ancestors. Non-targeted HPLC-MS metabolomics using a diverse panel of 264 maize inbred 

lines identified a bimodal distribution in the prevalence of foliar metabolites. Although 15% of 

the detected mass features were present in >90% of the inbred lines, the majority were found in 

<50% of the samples. Whereas leaf bases and tips were differentiated primarily by flavonoid 

abundance, maize varieties (stiff-stalk, non-stiff-stalk, tropical, sweet corn, and popcorn) were 

differentiated predominantly by benzoxazinoid metabolites. Genome-wide association studies 

(GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% 

have multiple significantly associated loci scattered across the genome. Several quantitative trait 

locus hotspots in the maize genome regulate the abundance of multiple, often metabolically 

related mass features. The utility of maize metabolite GWAS was demonstrated by confirming 

known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the 

accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate 

synthase-like gene. Similar to gene expression databases, this metabolomic GWAS dataset 

constitutes an important public resource for linking maize metabolites with biosynthetic and 

regulatory genes. 
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Introduction 

Plants produce wide variety of metabolites that are not directly related to their central 

energy metabolism and structural integrity. The distribution and diversity of these specialized 

metabolites are reflective of their essential functions in plant stress responses, especially in their 

interactions with microbial phytopathogens and insect herbivores. For human societies, plant-

derived specialized metabolites have long been valuable sources of flavor, nutrition, and 

pharmaceutical products. More recently, advances in genetics and molecular biology have led to 

clarification of the complete biosynthetic pathways of plant specialized metabolites such as 

glucosinolates (Halkier and Gershenzon, 2006) and benzoxazinoids (Zhou et al., 2018). This 

knowledge has made it possible to manufacture some plant specialized metabolites at industrial 

scales, as well as genetically improve crop species for pest and disease resistances. 

Productivity of maize (Zea mays), the world’s most economically important crop species, 

with more than 700 million metric tons harvested each year (Ranum et al., 2014), is often limited 

by pathogens and insect pests (Mueller, 2017). For instance, in parts of Africa, ongoing 

epidemics of fall armyworm (Spodoptera frugipeda) have devastated local maize production, 

with far-reaching socioeconomic ramifications (Stokstad, 2017). These problems highlight the 

need for continuous genetic improvement of pest and disease resistance in the commercial maize 

germplasm to cope with the spatiotemporal fluctuations of biotic stresses. Even after millennia of 

artificial selection, maize is known for its genetic diversity at the population level (Buckler et al., 

2006; Jiao et al., 2017). Similarly, different maize inbred lines possess distinct, tissue-specific 

profiles of specialized metabolites (Meihls et al., 2013; Wen et al., 2014; Handrick et al., 2016; 

Wen et al., 2016). Therefore, combining high-throughput metabolite profiling, existing genetic 

resources, and genotypic data for a metabolome-scale genome-wide association studies (GWAS) 

will allow large-scale identification of candidate genes and loci involved in maize specialized 

metabolism, opening up the possibility of harnessing the natural biochemical defenses found in 

the broader maize germplasm for improved pest and disease resistance. Similar approaches with 

rice seedling shoots and maize kernels have led to genome-wide identification of metabolic 

quantitative trait loci (QTL; Wen et al., 2014; Matsuda et al., 2015; Wen et al., 2016).   

In this study, we performed liquid chromatography-mass spectrometry (LC-MS) analysis 

of the tips and bases of the emerging third leaves of maize inbred lines from the Goodman 

diversity panel (Flint-Garcia et al., 2005). These two tissue types were chosen because: 1) they 
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represented distinct stages of differentiation, and 2) constitutive concentrations of specialized 

metabolites tend to decrease as plants age (Cambier et al., 2000; Zheng et al., 2015). The 

Goodman diversity panel contains 282 maize inbred lines belonging to five genetic 

subpopulations and has been genotyped with over 29 million single nucleotide polymorphism 

(SNP) markers (Bukowski et al., 2018). More recently, this genetic mapping panel was analyzed 

by whole transcriptome profiling of eight distinct tissue-environment combinations (Kremling et 

al., 2018), including the two tissue types used in the current study. Through metabolomic GWAS 

of maize seedling leaves, we not only provide new insights into the nature of the maize 

metabolome, but also have developed a public resource that can be used to associate both known 

metabolites and previously unidentified LC-MS mass features with specific regulatory and 

biosynthetic loci in the maize genome. 

 

Results 

Maize seedling leaf specialized metabolome between tissue types and genetic sub-

populations 

Through reversed-phase HPLC/high-resolution-MS analyses of 50% methanol extracts, which 

measures a wide range of mid-polarity metabolites, we obtained the specialized metabolome of 

the leaf bases of 230 inbred lines and the leaf tips of 264 inbred lines. After filtering, more than 

seven thousand mass features were detected in at least three of the samples (see Materials and 

Methods; Supplemental Datasets 1 & 2). To parse the natural variation in this dataset, a principal 

component analysis (PCA) was performed and showed that tissue type explained over 30% of 

the observed variance (Figure 1A). Two-way analyses of variance (ANOVA) on the same dataset 

showed that more than 97% of all the mass features analyzed were significantly influenced by 

tissue type (FDR < 0.05; Figure 1B; Supplemental Dataset 3). In contrast, genetically defined 

maize population structure did not make a significant contribution to the variance (Figure 1B; 

Supplemental Dataset 3), and failed to separate in a PCA analysis, even when metabolomics data 

were analyzed independently within each tissue type (Figure 1C,D). Similarly, PCA within either 

tissue type showed no systematic bias introduced by the different blocks where each maize 

inbred line was planted (Supplemental Figure 1). 

Metabolomic differentiation based on tissue type and genetic subpopulation are driven by 

different classes of specialized metabolites 
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In the total ultraviolet (UV) absorption chromatogram, neighboring peaks tended to have similar 

UV absorbance profiles. Specifically, peaks eluting between 240 and 360 s had UV absorbance 

profiles resembling phenylpropanoids, peaks eluting between 360 and 460 s had typical 

benzoxazinoid-like UV absorbance profiles, and those eluting after 460 s were flavonoid-like in 

their UV absorbance profiles (Supplemental Figure 2). These observations suggested that the 

range of mass feature retention times could be used to assign them into one of these three major 

classes.  

We plotted the extent of differentiation for each mass feature based on tissue type, 

genetic subpopulation, or their interactive effect, as measured by the negative logarithm of p-

values from two-way ANOVA, against their retention time (Figure 2A). These plots 

demonstrated that mass features from distinct ranges of the chromatogram, and hence different 

classes of specialized metabolites, were responsible for metabolomic differentiation by tissue and 

subpopulation, respectively. Specifically, mass features that were significantly different between 

leaf tips and bases tended to fall in the range of flavonoids, whereas those under significant 

influence from the maize subpopulation or its interaction with tissue type were almost 

exclusively found among the benzoxazinoids (Figure 2A). These visual patterns were confirmed 

with statistical comparisons of the extent of differentiation between the retention time groups 

(Figure 2B). Together, these observations indicate that: 1) flavonoid abundance is significantly 

different between the maize leaf tip and leaf base, and 2) maize genetic subpopulations differ 

primarily in their benzoxazinoid content. In support of the first hypothesis, all major mass signals 

co-eluting with flavonoid-like UV absorption peaks were completely absent in leaf base samples, 

and only found in the developmentally-advanced leaf tips (Supplemental Figure 3A). 

Correspondingly, two of the five maize paralogs encoding chalcone synthases, the enzyme 

catalyzing the first committing step in flavonoid biosynthesis, were differentially expressed 

amongst the two tissue types (based on B73 reference genome v4; Jiao et al., 2017), and these 

genes were expressed significantly higher in the leaf tips relative to leaf bases (Supplemental 

Figure 3B). To test the second hypothesis, we identified mass features representing the most 

abundant benzoxazinoid compounds in maize seedling leaves, 2,4-dihydroxy-7-methoxy-1,4-

benzoxazin-3-one (DIMBOA) and its methylated glucoside derivative, 2-(2-hydroxy-4,7-

dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc). DIMBOA was 

significantly depleted in tropical inbred lines, which instead contain significantly more 
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HDMBOA-Glc (P < 0.05, ANOVA), and presumably its highly unstable and undetectable 

aglucone (Supplemental Figure 4). This pattern is consistent with a previous study of 27 maize 

inbred lines, which identified a deactivating transposon insertion in BX12 (formerly BX10c), 

which encodes a DIMBOA-Glc methyltransferase, is more prevalent in tropical than in 

temperate maize inbred lines (Meihls et al., 2013). 

Structurally related metabolites tend to be co-regulated. 

Since structurally related metabolites usually arise from shared metabolic pathways, we expected 

these metabolites to be co-regulated in plants, and hence their natural variation should correlate 

with one another across the population. To test this hypothesis, we constructed mutual rank-

based correlation networks with the metabolomic dataset using an exponential decay function (λ 

= 50), and detected overlapping correlative clusters using the ClusterONE algorithm (Nepusz et 

al., 2012; Wisecaver et al., 2017).  We detected a similar number of significant clusters in leaf 

tips and bases (p < 0.05, Mann Whitney U test; 15 in leaf tips and 16 in leaf bases). Consistent 

with the larger number of mass features detected in the leaf tip samples, clusters found in leaf 

tips were significantly larger than those found in leaf bases (mean = 100 vs. mean = 58; p < 

0.005, Student’s t-test). The distribution of the retention times of mass features belonging to each 

correlative network was plotted in 10-second bins, and the extent of retention time clustering of 

each network was assessed by calculating the cumulative frequency of the top three bins (Figure 

3; Supplemental Dataset 4 & 5). In support of our hypothesis, in 24 of the 31 correlative 

networks detected, at least half of the mass features were located in the top three bins, suggesting 

that these co-regulated mass features are structurally related. Interestingly, we found that the 

cumulative frequency of the top three 10-second-bins in correlative networks derived from leaf 

tip metabolome (57%) was significantly lower than that of leaf base metabolome-derived 

networks (75%; p < 0.05, Student’s t-test).  

Maize metabolome is skewed towards rare metabolites. 

Our dataset provides an opportunity to examine the diversity of specialized metabolites in maize. 

In both tissue types, there was a bimodal frequency distribution of the mass feature occurrence 

rate, as measured by percent of maize genotypes where a mass feature was detected. Whereas 

15% of mass features in either tissue type were present in more than 90% of all the genotypes, 

more than 63% of mass features are found in less than half of the examined genotypes (Figure 

4A). If apparently rare mass features are the result of background variation in the MS data set, 
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we would expect them to have a lower signal intensity than mass features resulting from true 

metabolites. The mean non-zero intensity of each mass feature showed significant positive 

correlations (R2 > 0.96) with its occurrence rate in both tissue types (Figure 4B), suggesting that 

rare mass features were indeed lower in abundance. However, given the slope of the regression 

line, a mass feature detected in only 10% of all the genotypes would be on average less than ten-

fold lower in intensity than a ubiquitous mass feature. In contrast, mass features of any given 

occurrence rate show a hundred-fold range in peak intensity (Figure 4B). Therefore, most of the 

rare mass features are likely to be true maize metabolites that are present in only a subset of 

tested inbred lines.   

Genome-wide association studies with known metabolites reveal both known and novel 

genetic loci. 

The existing genotype dataset for the Goodman Diversity Panel (Bukowski et al., 2018) makes it 

possible to perform GWAS with each mass feature as an independent trait to understand its 

genetic architecture. Given the large number of traits to be analyzed, a rapid recursive GWAS 

pipeline was recently developed using an optimized general linear model (Kremling et al., 2018). 

Two benzoxazinoid compounds, 2-(2,4-dihydroxy-7,8-dimethoxy-1,4-benzoxazin-3-one)-β-d-

glucopyranose (DIM2BOA-Glc) and HDMBOA-Glc, were used as positive controls in leaf tips. 

Biosynthetic genes controlling the synthesis of these two compounds were previously identified 

through genetic mapping with recombinant inbred populations (Meihls et al., 2013; Handrick et 

al., 2016). GWAS with both metabolites confirmed the loci containing their respective 

biosynthetic genes (Bx10-12 on chromosome 1 for HDMBOA-Glc, and Bx13 on chromosome 2 

for DIM2BOA-Glc), with the most significantly associated SNPs being in linkage disequilibrium 

(LD) with the respective genes (Figure 5 & 6A). Interestingly, in addition to the SNP markers in 

LD with the known biosynthetic genes, GWAS also identified SNP markers associated with the 

metabolites of interest in adjacent LD blocks, suggesting the presence of cis-regulatory loci at 

some distance from the genes of interest (Figure 5 & 6A). Additionally, a locus on chromosome 

9 was strongly associated with natural variation in HDMBOA-Glc abundance. At this locus, the 

most significantly associated SNPs were located within a single 25 kb LD block (Figure 6A). Bi-

allelic haplotypes at the mapped loci on chromosome 1 and chromosome 9 were inferred by 

SNPs within each locus, and inbred lines were assigned to one of two haplotypes using a nearest 

neighbor cladogram. Haplotype assignment and metabolite quantification, showed an additive 
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effect on HDMBOA-Glc content from Bx10-12 and the newly identified locus on chromosome 9 

(Figure 6B). The single 25 kb LD block on chromosome 9 contained the 3’ region of 

GRMZM2G108309, a gene model encoding a putative protein phosphatase 2C family protein 

(Figure 6A). 3’ RNAseq data obtained from seedling leaf tips and bases (Kremling et al., 2018) 

showed that the expression of GRMZM2G108309 was significantly different between the inbred 

lines carrying either allele within the LD block (Figure 6C). Furthermore, inbred lines with high 

GRMZM2G108309 expression accumulated a significantly greater amount of HDMBOA-Glc 

than those with low expression (Figure 6C). Together, these results suggest that 

GRMZM2G108309 is a regulator of HDMBOA-Glc content in the tips of maize seedling leaves.  

Genetic architecture of specialized metabolites is complex and varies independently of 

heritability and occurrence rate 

Based on the successful identification of HDMBOA-Glc and DIM2BOA-Glc biosynthetic loci, 

we extended our GWAS to the metabolomic scale. Prior to this computation-intensive analysis, 

the LC-MS dataset was further filtered by the broad sense heritability (H2 ≥ 0.2), and rate of 

occurrence (detected in ≥ 10% of all genotypes examined). The augmented experimental design 

allowed estimation of broad sense heritability by calculating the variance of mass features 

measured in replicated B73 control samples, which were planted in each flat, as the 

environmental variance. Mass features not detected in B73 but present in other inbred lines were 

retained, even though their broad sense heritability could not be estimated. Altogether, 1,320 

mass features from the leaf bases and 2,554 mass features from the leaf tips remained after these 

filtering processes (Supplemental Datasets 6-9), and GWAS was performed for each metabolite 

using a 29 million SNP dataset (Bukowski et al., 2018).  

 Previous genetic mapping analyses with metabolic traits in rice and maize have often 

identified small numbers of large-effect genetic loci (Meihls et al., 2013; Chen et al., 2014; 

Matsuda et al., 2015; Handrick et al., 2016; Wen et al., 2016). To investigate whether these 

observations represent the rule or the exception in the genetic architecture of metabolic traits, the 

top 10 most strongly associated SNP markers for each mass feature were collected, and the 

number of SNPs were counted in 10 kb segments spanning the maize genome. This analysis 

showed that, in both leaf tips and leaf bases, the ten most significant SNP associations were in an 

average of 7.4 distinct 10 kb blocks (Figure 7A). If the size of the scanned chromosomal 

segments was increased to 60 kb or 360 kb (Supplemental Figure 6), the average number of 
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distinct blocks with significant SNP associations decreased to 6.8 and 6.2, respectively, but the 

overall shape of distribution was not affected. Less than 9% of all mass features analyzed in 

either tissue type had their top 10 most strongly associated SNP markers located in three or fewer 

10 kb blocks. This indicates that metabolic traits, unlike previously assumed, tend to have 

complex genetic architecture, under control of numerous interacting genetic loci. The most 

prevalent mass features (occurrence in > 90% of inbred lines) mapped to significantly more loci 

than mass features that were less prevalent in the population (Figure 7C), suggesting that 

components of basal metabolism are subject more complex regulation than specialized 

metabolites. Otherwise, no consistent trend in genetic architecture complexity, as measured by 

number of mapped loci, was observed with increasing heritability or occurrence rate (Figure 

7B,C). 

Phenylpropanoid hydroxycitric acid ester isomers found in distinct maize subpopulations 

are associated with a predicted citrate synthase  

A goal of most genetic mapping projects is to identify loci that are significantly associated with 

specific metabolites of interest, pinpoint candidate genes, and experimentally test for a causal 

relationship. A metabolome mapping dataset such as the one that we have developed, could be 

used to rapidly associate LC-MS data with previously unknown biosynthetic or regulatory loci in 

the maize genome. To test this hypothesis, we genetically mapped the abundance of a relatively 

under-investigated class of maize metabolites, phenylpropanoid hydroxycitric acid esters (Ozawa 

et al., 1977; Plenchamp, 2013). 

One of the patterns that manifested itself in our analyses of specialized metabolite 

diversity was that there were clear outliers to the overall positive correlation between the 

occurrence rate and mean non-zero intensity of mass features (Figure 4B). The majority of these 

outliers were concentrated in the high occurrence rate range, where the linear correlative 

relationship was capped by maximal occurrence rate. However, in both leaf tips and bases, a 

group of high intensity mass features were detected in 20% or fewer of the examined genotypes. 

Among these outliers, there were three mass features with characteristic phenylpropanoid-like 

UV absorbance profiles and two common daughter ions with m/z = 189.004 and m/z = 127.003 

under negative electron spray ionization (Supplemental Figure 5A). This suggested that these 

three peak groups represented conjugates of similar moieties to different phenylpropanoid 
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moieties. Furthermore, the observed mass differences suggested that the phenylpropanoid 

moieties in these three metabolites differed by hydroxyl and methyl groups, respectively. 

In maize inbred lines where these predicted phenylpropanoid metabolites were not 

detected, at least one other peak was present in each of the three m/z channels, all of which had 

earlier retention times than those that were detected in less than 20% of maize lines. These 

earlier-eluting peaks also had phenylpropanoid-like UV absorption peaks and had the same 

daughter ions in MS/MS. The earlier elution times of the peaks with higher occurrence rate 

suggested that they are structural isomers with higher polarity relative to the three high-

abundance peaks that are present in less than 20% of maize lines (Supplemental Figure 5B). To 

examine how these pairs of structural isomers were distributed, a phylogenetic tree of the 

Goodman population was estimated using a 66 thousand SNP dataset (derived from those 

described by Samayoa et al., 2015), and the abundance of the three pairs of structural isomers 

was plotted across this tree (Figure 8A). In both tissue types, the rare isomers tended to co-occur 

and were over-represented among the tropical inbred lines. Furthermore, presence of the two 

groups of isomers was generally mutually exclusive. However, these trends were not perfect, 

particularly in the case of the isomers with m/z = 369.046, both of which were sporadically 

distributed across the population in the leaf bases without necessarily co-occurring with the other 

metabolites. The metabolism of these pairs of phenylpropanoid-containing isomers is likely also 

under developmental regulation, as is demonstrated by the different phylogenetic patterns in leaf 

tips and leaf bases. 

Two-dimensional nuclear magnetic resonance (NMR) spectra of isolated samples of the 

more polar isomers that were found primarily in the temperate maize inbred lines showed that 

they are ester conjugates of coumaric acid, caffeic acid, and ferulic acid, with 2-hydroxycitric 

acid (Supplemental Dataset 10). In all three cases, these more polar isomers were identified as 

the 2-O-acylated derivatives. When attempting to isolate the corresponding structural isomers 

that were primarily found in the tropical inbred lines, the isolated samples rapidly degraded in 

the NMR solvent, and hence their exact chemical structures could not be fully elucidated. 

However, their instability suggests that these later-eluting isomers represent the corresponding 3-

O-acylated dihydroxycitric acid esters of coumaric acid, caffeic acid, and ferulic acid, given that 

3-O-acylated dihydroxycitric acid esters are prone to acid- or base-catalyzed elimination of the 

3-O-acyl moiety. Although phenylpropanoid dihydroxycitric acid esters were previously 
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identified as pathogen-induced maize metabolites, their biological function has not been 

evaluated (Ozawa et al., 1977; Plenchamp, 2013).  

GWAS showed that, for all three pairs of phenylpropanoid-hydroxycitric acid ester 

isomers, the most strongly associated SNP markers were located within a 10 kb LD block on 

Chromosome 4 (Figure 8C). In the B73 reference genome, this LD block contained a single gene 

model, GRMZM2G063909, which was annotated as an ortholog of Arabidopsis thaliana and 

Oryza sativa citrate synthase family genes (Figure 9). Expression of this gene was not 

significantly different between maize inbred lines accumulating different structural isomers of 

phenylpropanoid hydroxycitric acid esters (Kremling, 2018; Supplemental Figure 6), suggesting 

that structural variation in the encoded enzyme is more likely to be responsible for the observed 

metabolic differences. To independently verify the genetic association between 

GRMZM2G063909 and the phenylpropanoid hydroxycitric acid ester isomers, we examined two 

sets of isogenic lines (NILs) derived from sixth-generation Ki11 x B73 and CML247 x B73 

recombinant inbred lines (McMullen et al., 2009) with residual heterozygosity at 

GRMZM2G063909. Whereas B73 encodes the temperate isomers of the phenylpropanoid 

hydroxycitric acid esters, Ki11 and CML247 encode the tropical isomers. Both NIL families 

showed perfect co-segregation between the genotypic markers and the two classes of 

phenylpropanoid hydroxycitric acid esters (Figure 10A). Furthermore, heterozygote lines showed 

intermediate phenotypes, producing both isomers, but to lesser abundance than either 

homozygote. Whereas the two tropical inbred lines also accumulated small amounts of the more 

polar isomers that are characteristic of temperate inbred lines, B73 tissues did not contain any of 

the less polar phenylpropanoid hydroxycitric acid esters (Figure 10B,C).  

Structurally related metabolites tend to be co-regulated 

In addition to identifying candidate genes significantly associated with individual metabolites of 

interest, our GWAS results can be used to find genetic loci with disproportionate influence on 

the overall maize metabolome. When the distributions of the most significantly associated SNP 

markers for each of the 4,859 mass features were plotted in 10 kbp intervals across the maize 

genome, this identified several “hotspots” to which a disproportionate number of metabolites 

were mapped (Figure 11A,C). The locations of these hotspots were consistent when the analysis 

included either the 10 or the 50 most significantly associated SNP markers for each mass feature, 

as well as when varying the size of chromosomal blocks used for the plotting the QTL 
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distribution (increasing from 10 to 60 or 360 kbp; Supplemental Figure 7). Thus, the positions of 

these QTL hotspots are unlikely to be an artifact of the specific data analysis approach. 

In both leaf bases and tips, three loci on chromosomes 1, 4, and 10, respectively, showed 

a large number of metabolite GWAS hits. The genomic hotspot on Chromosome 1 represents a 

110 kb region containing the BX11 and BX12 genes, two paralogous O-methyltransferases that 

catalyze the biosynthesis of HDMBOA-Glc (Meihls et al., 2013). Mass features mapped to this 

locus include HDMBOA-Glc, DIMBOA, and other benzoxazinoid compounds. Interestingly, 

many mass features that were not associated with known benzoxazinoid compounds also mapped 

to this locus, suggesting regulation of other specialized metabolites. Such regulation could be 

indirect, as benzoxazinoids have been shown to induce other maize defenses (Ahmad et al., 

2011; Meihls et al., 2013). The genomic hotspot on chromosome 4, which contained the most 

GWAS hits in both tissue types, was divided between two 10 kb blocks, one containing the 

predicted citrate synthase family gene mentioned above (GRMZM2G063909), and the other 

containing a similarly annotated gene model, GRMZM2G064023. Finally, the less prominent 

hotspot on chromosome 10, which influenced a dozen mass features in either tissue type, 

spanned a 30 kb region. In the reference B73 genome, this region contained seven retroelements 

and a low confidence gene model. The prevalence of transposon genes in this region in the B73 

genome suggested that there may be presence/absence variation among the diverse maize inbred 

lines, and the causative gene may not be present in the B73 reference genome. 

In addition to the three hotspots shared between both tissue types, there were also 

genomic hotspots specific to either tissue type. For instance, 9 mass features found in leaf tips 

had at least one of their 10 most-associated SNP markers located within a 20 kb region on 

chromosome 3. This region contained a single gene model, GRMZM2G143723, which is 

analogous to a rice C2H2 zinc finger protein. These tissue type-specific genomic hotspots were 

indicative of development-dependent regulation of specialized metabolism in maize seedling 

leaves.  

Among the identified genomic hotspots, two contained confirmed or likely biosynthetic 

genes. In the case of the chromosome 1 hotspot containing BX11 and BX12, we observed that 

most of the mass features mapped to this locus represented benzoxazinoid metabolites. This led 

us to hypothesize that the genomic hotspots contained one or more loci that regulate multiple 

structurally related metabolites derived from the same biosynthetic pathway. To test this 
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hypothesis, the mass features were ordered by the location of their most strongly associated SNP 

markers in the maize genome, and the variance in retention time was calculated with a sliding 

window of one hundred mass features with adjacent QTL in the genome. Since most mass 

features have their most strongly associated SNP markers at multiple positions in the genome, 

their retention times were included in the calculations more than once. Across the entire maize 

genome, there was a stable background level of retention time variance. However, there were 

clear dips, i.e. lower variance in the retention time, below the background level at some loci. 

When results from this analysis were aligned to the previous plots of mass features per locus, 

there was co-localization of dips in retention time variance with the genomic QTL hotspots 

(Figure 11B,D), indicating that abundance of structurally related metabolites tended to be co-

regulated by the same genetic loci. This pattern was true for all three of the genomic hotspots 

shared by both tissue types, but was not necessarily valid all the time. For example, the 

significant dip in retention time variance on chromosome 1 downstream of the genomic hotspot 

containing BX11 and BX12 did not correspond to any increase in the number of mass features 

mapped to that locus, whereas mass features mapped to the leaf base-specific hotspot on 

chromosome 3 did not have similar retention times.  

 

DISCUSSION 

Technological advances in mass spectrometry and accumulating high-density genotypic data are 

enabling metabolome-scale quantitative genetics studies. Prior studies of this type range from 

primary metabolites of nutritional interest to known specialized metabolites in both model plants 

and economically relevant crop species (Chan et al., 2010; Chan et al., 2011; Riedelsheimer et 

al., 2012; Chen et al., 2014; Wen et al., 2014; Matsuda et al., 2015). However, unlike 

transcriptomic data, where each transcript can be functionally annotated to at least some extent 

based on sequence homology and structural features, most mass features from non-targeted 

metabolomics datasets represent unknown metabolites, and the mass spectrometry data provide 

incomplete information about their structures. Our metabolome-scale correlation network 

analyses (Figure 3) and genome-wide association studies (Figure 11; Supplemental Datasets 11 

and 12) provide a basis for structural and functional assignments of the many unknown 

metabolites in maize seedlings. These metabolomic genetic mapping data complement other 

currently available approaches to metabolite identification, including large scale co-elution tests 
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with known compounds and the construction of molecular networks based on shared tandem 

mass spectrometry (MS/MS) fragments, which are indicative of structural similarity (Nguyen et 

al., 2013; Matsuda et al., 2015). 

 Our datasets allowed us to assess variation in the maize specialized metabolome in two 

tissue types across a diverse population of inbred lines. The metabolomes of both leaf tips and 

leaf bases demonstrated bi-modal distributions, with a relatively small core component and a 

large number of rare mass features (Figure 4A). In comparison to the presence/absence 

distribution of gene expression in the maize pan-transcriptome (Hirsch et al., 2014), the profiles 

of our metabolomic data are much more left-skewed, i.e. the majority of maize metabolites are 

present in less than 50% of the inbred lines. This is perhaps reflective of the more commonly 

non-essential nature of specialized metabolites relative to transcripts, which contain large 

numbers of housekeeping genes that are involved not only in primary metabolism but also other 

essential cellular functions. However, the observed distribution differences could also result from 

the greater sensitivity of RNAseq-based transcriptomics compared to metabolomics, which 

would allow detection of rare transcripts in a larger number of maize inbred lines. 

Our genetic mapping data confirm known associations between benzoxazinoids and their 

functionally characterized biosynthetic genes (Figures 5 and 6; Meihls et al., 2013; Handrick et 

al., 2016). The identification of a HDMBOA-Glc regulatory locus on chromosome 9 (Figure 6), 

which was not found in previous bi-parental mapping studies, highlights the power of broader 

genetic diversity and denser SNP markers. Additionally, we demonstrated the use of this 

resource with a group of little-studied metabolites, phenylpropanoid hydroxycitric acid esters 

(Ozawa et al., 1977; Plenchamp, 2013). Both GWAS and two bi-parental NIL families 

associated a predicted citrate synthase with isomeric variation in the phenylpropanoid 

hydroxycitric acid esters that are produced in maize seedlings (Figures 9 and 10). Although, due 

to their rapid degradation after extraction, we were not able to confirm the chemical structures of 

the less polar isomers, they plausibly represent the 3-O-acylated isomers, which are prone to 

decomposition via elimination of the phenylpropionic acid moieties. Structural variation in the 

identified citrate synthase-like gene is a likely cause of the observed chemical diversity.  

In addition to individual genetic locus-metabolic phenotype associations, our study 

provides a metabolome-scale evaluation of the complex genetic architecture of metabolic traits in 

maize seedling leaves. Unexpectedly, only a small number of metabolic traits have a simple 
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genetic architecture, as measured by the number of biosynthetic or regulatory loci significantly 

associated with them. Moreover, we observed no consistent correlative relationship between 

genetic architecture complexity and heritability or occurrence rate of metabolic traits (Figure 7). 

We speculate that individual metabolic traits are regulated by different sets of genetic loci in 

different subsets of the maize population. This observation also could explain the significantly 

higher number of the mapped loci associated with the most ubiquitous mass features (Figure 7C), 

which are more likely to be involved in primary metabolism.  

Another omic-scale pattern identified from our study are tissue-specific and shared 

metabolite QTL hotspots (Figure 11). This non-uniform distribution of significant GWAS hits is 

comparable to results from a published rice metabolite GWAS (Chen et al., 2014). Similar UV 

absorbance profiles of metabolites in the QTL hotspots indicate that structurally related 

metabolites tend to be co-regulated by shared genomic loci (Figure 3; Figure 11). The presence 

of these metabolite QTL hotspots generates hypotheses for the regulation of specialized 

metabolism both for specific metabolites and at a system scale, and further studies into these loci 

could lead to elucidation of the underlying physiological mechanisms of these genetic 

associations. 

By demonstrating use of the Goodman diversity panel to map metabolite quantitative 

traits to the single-gene or near single gene level (Figures 5,6, and 8), we have generated a rich 

resource of high-resolution associations between maize metabolic phenotypes and genetic loci. 

Future researchers who are investigating maize metabolites LC-MS will be able to link their 

identified mass features with our genetic mapping data to identify potential biosynthetic and 

regulatory loci. For instance, if our mapping data (Supplemental Datasets 11,12) had been 

available, the authors who previously reported the discovery of phenylpropanoid hydroxycitric 

acid esters in maize (Ozawa et al., 1977; Plenchamp, 2013) could have immediately associated 

their metabolites with GRMZM2G063909, the citrate synthase-like gene that regulates their 

relative abundance (Figures 8 and 9). Large gene expression data sets generated with DNA 

microarrays or Illumina-based sequencing (RNAseq) are frequently used for experimental 

validation and to generate ideas for further research. In a similar manner, our metabolomic 

association mapping data constitute a community resource that will allow the formulation of 

testable hypotheses and functional analysis of diverse maize metabolites. Even in the absence of 

functional validation, the genetic loci and alleles that we have identified will be useful for marker 
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assisted breeding to increase the production of targeted maize metabolites, thereby promoting 

pathogen resistance or other important agronomic traits. 

 

MATERIALS AND METHODS 

Plant growth and tissue collection. All maize seeds were originally obtained from the Maize 

Genetics Cooperation Stock Center (Urbana Champaign, Illinois). To ensure comparability of 

our metabolomics data with previous published transcriptomics data collected in the same tissue 

types, the exact same seed stocks were used and the growth conditions was replicated in the 

same greenhouse space at the same time of the year, early June (Kremling, 2018). Eight seeds of 

each maize genotype were planted in vermiculite, and the entire diversity panel was fitted into 

twenty-six 96-cell flats. To control for micro-environmental variation, eight B73 seeds were 

included in each flat, and all flats were randomized daily. When the third leaf had visibly 

emerged from the whorl, two centimeters of tissue from the leaf tips and bases were collected. 

For leaf base tissues, seedlings were cut at the soil line, and unrolled to expose the base. For each 

maize inbred line, tissues from two seedlings were pooled, weighed, and snap frozen in liquid 

nitrogen for metabolite extraction.  

Metabolomics analyses and data preprocessing. Frozen seedling leaf tissues were extracted 

with 200 µL of 50% methanol acidified with 0.1% formic acid, and analyzed on a Sigma 

Supelco reverse phase C18 column on a Dionex 3000 Ultimate UPLC-diode array detector 

system coupled to a Thermo Q Exactive mass spectrometer. The two mobile phase solvents were 

water (Solvent A) and acetonitrile (Solvent B), both acidified with 0.1% formic acid. The mobile 

phase gradient ran from 95% Solvent A at 0 minutes to 100% Solvent B at 10.5 minutes with 

curvature of 2 to optimize compound separation while reducing the runtime of each individual 

analysis to accommodate our large sample size. Each extract was separately analyzed with both 

positive and negative modes of electron spray ionization. Raw mass spectrometry output files 

were converted to mzxml formats with the MSConvert tool using an inclusive MS level filter 

(Chambers et al., 2012). Metabolite quantification was estimated with signal intensity acquired 

through the XCMS-CAMERA mass scan data processing pipeline (Tautenhahn et al., 2008; 

Benton et al., 2010; Kuhl et al., 2012). To account for potential rare metabolites occurring in this 

diverse population, the minimal sample threshold for keeping a mass feature was set at three at 

the grouping step of the XMCS processing. For initial chemical diversity analyses, LC-MS 
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results from different tissue types were processed together to allow comparison across tissue 

types. For tissue-type specific statistical analyses and GWAS, only LC-MS results from the same 

tissue type were aligned to one another and processed as a group to avoid widespread zero values 

introduced by tissue-specific mass features. 

 Mass features detected by the XCMS-CAMERA pipeline were filtered based on their 

retention times (60-630 seconds) and exact masses (m/z < 0.5 at first decimal point), and peaks 

annotated as naturally occurring isotopes were removed. Peaks annotated as MS adducts were 

retained because we had observed higher rate of false annotation of real metabolites into this 

category. Mass feature quantification was then corrected by tissue fresh weight and normalized 

by the total ion concentration of each sample to account for technical variation. 

Chemical diversity analyses. Measurement of each mass feature across the diversity panel was 

log-transformed for multivariate analyses. Zero values were changed to 1 prior to log-

transformation. This dataset was uploaded to the MetaboAnalyst 3.0 online tool platform for 

principal component analysis and two-way ANOVA (Xia et al., 2015). The mass feature list was 

further filtered by interquartile range and Pareto scaled before these analyses. In both tissue 

types, a small number of genotypes had only data available from either positive or negative 

ionization mode analysis due to failed run under the other mode. These missing data were 

replaced by zeros to minimize their influence on the overall data structure without losing the 

usable data. Each maize inbred line was assigned to a genetic subpopulation as defined in Flint-

Garcia et al., 2005. All other statistical analyses and data visualization were carried out in R and 

Microsoft Excel.  

Structural confirmation of phenylpropanoid hydroxycitric acid esters. The three 

phenylpropanoid hydroxycitric acid esters examined in this study were extracted overnight at 4 

°C from bulk snap-frozen B73 seedling leaves with 50% methanol acidified with 0.1% formic 

acid. Solid debris was removed through centrifugation and the crude extract was concentrated 

with a Buchi Rotovapor. Target compounds were separated with a water:acetonitrile gradient on 

a ZORBAX Eclipse XDB C18 column on an Agilent 1100 HPLC system (Agilent, Santa Clara, 

CA). Purified compounds were dried, weighed, and re-dissolved in pure methanol. NMR 

spectroscopy analyses were carried out on a Unity INOVA 600 instrument (Varian Medical 

Systems, Palo Alto, CA) with the following conditions: 256 scans for 1H NMR; nt = 16 and ni = 

800 for COSY and nt = 32 and ni > 800 for HSQC and HMBC.     
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Correlative network analyses. The metabolomic datasets were used to calculate pairwise 

Pearson correlation matrices, and then mutual rank matrices for the two tissue types separately. 

Pairwise mutual rank indices were converted to edge weights by an exponential decay functions, 

with λ = 50 as previously described Wisecaver et al., 2017. For each conversion, edges with 

weight lower than 0.01 were filtered out. These edge lists were imported into Cytoscape v 3.4.0 

(Shannon et al., 2003) and overlapping clusters were detected with the ClusterONE app (Nepusz 

et al., 2012).  

Genome-wide association study with metabolic traits. The signal intensity of each mass 

feature across the population was log-transformed. Box-cox transformation was skipped as it 

distorted the distribution of the rare mass features with lots of zero values. Mass features were 

filtered based on estimated broad sense heritability and rate of occurrence as described in the 

Results section, and the remaining 3,991 mass features were analyzed with the fast GWAS 

pipeline (Kremling et al., 2018). To reduce data storage to a realistic level, only SNPs with –

log(p) ≥ 5 for each mass feature were recorded. The top 50 most significantly associated SNP 

markers of each mass feature from leaf tips (Supplemental Dataset 11) and leaf bases 

(Supplemental Dataset 12) were extracted for easier reference. 

 To survey the genetic architectures of metabolic traits, and investigate their relationship 

with trait heritability and occurrence rate at a metabolomic scale, the top 10 most strongly 

associated SNP markers for each metabolic trait to three different fixed size LD blocks, namely 

10 kb, 60 kb, and 360 kb were mapped. As expected, more metabolic traits have their top GWAS 

SNP hits located within fewer number of LD blocks as the estimated LD size increases, but the 

overall shape of distribution was not affected (Supplemental Figure 8). The same LD-block 

assigning process was used to generate the overview of GWAS hits distribution across the maize 

genome, by counting the numbers of mass features mapped to each LD block, and plotting them 

according to the physical location of the LD blocks in the maize genome. Similarly, the locations 

of metabolite QTL genomic hotspots are consistent across different window sizes of LD 

(Supplemental Figure 7). Finally, GWAS hits were ordered based on their physical location in 

the maize genome, and the log variance of mass feature retention time of a hundred adjacent hits 

was calculated using a sliding window algorithm.  

Local LD estimation, haplotype inference, and inbred lines phylogenetic reconstruction. 

SNP marker data across the same GWAS diversity panel around the most strongly associated 
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SNP makers for each trait were downloaded from Cyverse Discovery Environment under the 

following directory (iplant/home/shared/panzea/hapmap3/hmp321), and used to estimate local 

LD with the pairwise correlation with sliding window algorithm implemented in TASSEL 5.2.40 

(Bradbury et al., 2007). Bi-allelic haplotypes at genetic loci associated with HDMBOA-Glc on 

Chromosome 1 and Chromosome 9 were inferred by SNP data at either locus with a nearest 

neighbor cladogram also implemented in TASSEL 5.2.40. A smaller SNP dataset (Samayoa et 

al., 2015) with filtering for maximal missing data (<80%), maximal heterozygosity level (<50%), 

and minimal minor allele frequency (>30%) was use to estimate the phylogenetic relationship 

among the maize inbred lines included in this study. Approximately 66 thousand SNP markers 

were retained after the filtering process and were used to calculate a pairwise distance matrix 

with TASSEL 5.2.40. This distance matrix was then used to construct a phylogenetic tree using a 

hierarchical clustering algorithm with the Ward method implemented by the hclust function in R. 
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Figure 1. Maize specialized metabolome significantly differentiates leaf tips and bases, but 
less so among genetic subpopulations. (A) Maize seedling leaf metabolomes can be 
differentiated between tips and bases with a principal component analysis. (B) Consistently, more 
mass features are significantly different by tissue type than between subpopulations (two-way 
ANOVA, FDR < 0.05). Number of mass features differed by tissue type (red),  subpopulation 
(yellow), or their interactive effect (blue) are shown in the colored circles, with overlaps. (C,D) 
Within either tissue type, genetic subpopulations cannot be differentiated based on their overall 
metabolomic fingerprint.
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Figure 2. Metabolomic differentiation between tissue types and among subpopulations is driven 
by different classes of specialized metabolites. (A) Each mass feature is plotted by its retention time 
(x-axis) and –log(p) by either tissue type, subpopulation, or their interactive effect (y-axes; Two-way 
ANOVA), and aligned to a sample total ion chromatogram. Representative metabolite class of each 
retention time range is determined by ultraviolet absorbance profiles of major peaks in the range, as 
shown in Supplemental Figure 1. (B) Average –log(p) from two-way ANOVA by each variable is 
compared among three retention time ranges, corresponding to three classes of specialized 
metabolites. Different letters indicate P < 0.05, ANOVA followed by Tukey’s HSD test. Error bars = 
standard errors.
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Figure 3. Mass features in the same correlation network tend to have similar retention times. 
Distributions of retention times of mass features each correlation network are plotted in ten-second 
increment bins and are aligned to the topographical presentations of the networks. Density and p-value 
(one-sided Mann-Whitney U test) of each network is calculated by the graph-clustering algorithm 
ClusterOne. The top 3 sum is the accumulative percentage frequency of the top 3 ten-second bins, which 
is used to assess the level of clustering in retention time within each network. Only two significant 
networks with contrasting level of retention time clustering from either tissue type are shown. All other 
significant network (p < 0.05) are listed in Supplemental Datasets 4 & 5.
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Figure 4. Mass feature occurrence rates are bimodally distributed and are positively correlated 
with their average non-zero intensity. (A) Distribution of mass feature occurrence rate in either 
tissue type is plotted in 10% incremental bins. (B) Each mass feature in either tissue type is plotted by 
its occurrence rate (x-axis) and the log of average non-zero intensity scale (y-axis). Significant 
positive linear correlations between the two variables are found in both tissue types. Mass features 
that are above the 99% confidence interval of the overall linear correlation patterns are marker in red.
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Figure 5. DIM2BOA-Glc is significantly associated with genetic markers within and adjacent 
to its biosynthetic gene. Natural variation in the abundance of DIM2BOA-Glc was mapped by 
GWAS. Each SNP marker is plotted by its physical location in the maize genome (x-axis) and level 
of association with DIM2BOA-Glc abundance (y-axes). SNP markers on adjacent maize 
chromosomes (labeled on the bottom) are shown in different colors. Only SNP markers with –log(p) 
> 5 are plotted. Local LD blocks around the most highly associated markers, calculated from the 
same SNP dataset, are indicated by black bars at the bottom of the plots, and known benzoxazinoid 
biosynthetic genes are highlighted in red. 
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Figure 6. Genome-wide association analysis with HDMBOA-Glc identifies known biosynthetic 
genes and a previously unknown locus. (A) Natural variation in the abundance of HDMBOA-Glc 
was mapped by GWAS. Each SNP marker is plotted by its physical location in the maize genome 
(x-axis) and level of association with HDMBOA-Glc abundance (y-axes). SNP markers perfectly 
associated with the phenotype (i.e. p = 0) were rounded down to 30 on the y-axes for graphical 
representation. SNP markers on adjacent chromosomes (labeled on the bottom) are shown in 
different colors. Only SNP markers with –log(p) > 5 are plotted. Local LD blocks around the most 
highly associated markers, calculated from the same SNP dataset, are indicated by black bars at the 
bottom of the plots, and known benzoxazinoid biosynthetic genes are highlighted in red. (B) 
Additive effect on HDMBOA-Glc abundance of the two loci on chromosome 1 and chromosome 9. 
(C) Effect of haplotypic segregation on the candidate gene expression. (D) Effect of candidate gene 
expression level on HDMBOA-Glc abundance. Error bars = standard errors.
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Figure 7. Metabolic traits tend to have complex genetic architecture irrespective of their 
heritability or occurrence rate. (A) Distribution of mass features in leaf tips and bases is plotted by the 
number of 10 kb LD blocks that contain one of their top 10 strongest associated SNP markers. Statistical 
mean of each distribution is given and marked by an arrow. This measurement was then compared across 
different heritability level (B) and occurrence rate (C) by one-way ANOVA and Tukey HSD. Groups 
significantly different from each other (p < 0.05) are denoted with different letters on their respective 
columns. Error bars = standard errors. NS = not significant
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Figure 8. Three pairs of hydroxycitric acid conjugates have complementary distribution and 
common regulation of abundance in the maize diversity panel. (A) Phylogenetic tree of the 282 maize 
inbred lines included in the GWAS panel is constructed with the distance matrix calculated from 66 
thousand SNP markers. The estimated concentration of three pairs of phenylpropanoid-containing 
structural isomers are shown in a color scale (blue = low abundance, yellow = high abundance, white = 
no sample measured) for each maize inbred line. Each monophyletic group is assigned to a genetic 
subpopulation as defined in Flint-Garcia et al., (2005) by the predominant group assignment for the 
individuals within that clade. (B) The pairs of mass features shown in panel A have different retention 
time in minutes (r.t.) were detected in negative ionization mode (m/z) and (C) GWAS identified a 
common locus on chromosome 4 that regulates the abundance of all of the identified mass features from 
panel A. Only the results from the more polar isomers with structural confirmations are shown.
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Figure 9. Phenylpropanoid hydroxycitric acid esters are associated with a predicted citrate 
synthase-like gene. SNP markers most strongly associated with the phenypropanoid hydroxycitric
acid esters are plotted by their physical location in the maize genome (x-axis) and level of 
association with the metabolites (y-axis), and overlaid on the predicted transcripts of 
GRMZM2G063909 located at the same locus (A). Pairwise correlation coefficients between SNP 
markers around the candidate gene are calculated to demonstrate that the significantly associated 
SNP markers are not in linkage disequilibrium with any adjacent gene model (B).
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Figure 10. Different isomers of phenylpropanoid hydroxycitric acid esters co-segregate with 
genetic markers at QTL on Chromosome 4 across near isogenic lines. (A) Representative PCR-
based genotyping results and (B) negative ionization mode LC-MS chromatograms of B73 x Ki11 
near-isogenic lines. Peak area of all isomers found in near isogenic lines of different genotypes are 
normalized by total ion concentration of each sample and the total normalized peak area are 
compared across genotypes and between each other with two-way ANOVA followed by Tukey
HSD. Groups of different significance level are indicated by different letters (p < 0.05). N = 14 
(B73), 3 (Het), and 4 (CML247/Ki11). N.D. = not detected.
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Figure 11. Metabolite GWAS hotspots tend to be associated with mass features that have similar 
retention times. (A,C)  The number of mass features with at least one of their top 10 or top 50 most 
strongly associated SNP marker located in each 10 kbps block is plotted for either tissue type. Results of 
neighboring chromosomes are shown in different colors, and results based on different top SNP threshold 
(10 or 50) are indicated by different color brightness. (B,D) Variance in the retention time of 100 mass 
features with adjacent GWAS hits in a sliding window across the genome are calculated and mapped 
based on the physical location of the top SNP hits. 
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Supplemental Figure 1. Maize seedling leaf specialized metabolomes are not significantly 

different among experimental blocks. Principal component analyses of specialized metabolome

data collected from (A) tips and (B) bases of the emerging third leaves of diverse maize inbred 

lines. Each maize line is represented by a dot, and the random experimental block where it is 

assigned is denoted by different colors. 95% confidence range of each group is shown by the 

correspondingly colored circles.
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Supplemental Figure 2. Major peaks from distinct ranges of the chromatogram 

share characteristic UV absorbance profiles. The UV absorbance profile of each peak 

was constructed with a photodiode array detector. The boundary of each retention time 

range was determined by the last peak showing the same characteristic UV absorbance 

profile. There was no detectable overlap between neighboring retention time ranges.
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Supplemental Figure 3. Flavonoids are absent and chalcone synthases 

expression is low in seedling leaf base tissues. (A) Sample UV absorbance 

chromatograms of the seedling leaf tip and base of the same genotype are shown to 

demonstrate the lack of peaks in the flavonoid time range (460-570 seconds). (B) 

Average expression of five chalcone synthase-encoding gene models in the B73 

reference genome v4 (Annotation 5b+) across the Goodman diversity panel are 

compared between these two tissue types with Student’s t-tests (*FDR < 0.05). Error 

bars = standard errors. Expression data were obtained from Kremling et al., 2018.
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Supplemental Figure 4. Tropical and temperate maize lines accumulate different 

benzoxazinoid compounds. Maize inbred lines are assigned to genetic 

subpopulations defined in Flint-Garcia et al., 2005. The median of each group is 

denoted by the central think black line, quartiles by the boxes, and 1.5 x the interquartile 

range by the whiskers.
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Supplemental Figure 5. Phenylpropanoid-like mass features co-elute with common 

daughter ions. (A) Mass spectrum scans of three mass features co-eluting with 

phenylpropanoid-like UV absorbance peaks are shown. The parental ions and the two shared 

daughter ions are labeled with their exact m/z measurement. (B) In two different maize inbred 

lines, the predominant peaks at each specific m/z range eluting at different retention times likely 

represent different structural isomers of the same compound.
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Supplemental Figure 6. Expression of the citrate synthase family gene is not 

significantly different between maize inbred lines accumulating different 

phenylpropanoid hydroxycitric acid isomers. GRMZM2G063909 expression in the 

two tissue types under study was obtained from Kremling et al. (2018) and compared 

between maize inbred lines accumulating different phenylpropanoid hydroxycitric acid 

ester isomers. No significant difference (N.S.) in expression is found in either tissue 

type (p > 0,05; Student’s t-test).

0

100

200

300

400

500

600

700

Tip Base

Tropical Temperate

R
e

la
ti
v
e

 E
x
p

re
s
s
io

n
 ±

s
.d

.

N.S.

N.S.

Rare Common

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/450338doi: bioRxiv preprint first posted online Oct. 22, 2018; 

http://dx.doi.org/10.1101/450338
http://creativecommons.org/licenses/by-nc-nd/4.0/


0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10

Number of Mapped Loci

F
re

q
u

e
n

c
y

W
in

d
o
w

 S
iz

e
 =

 6
0
 k

b
W

in
d
o
w

 S
iz

e
 =

 3
6
0
 k

b

Tip

Base

Tip

Base

Supplemental Figure 7. Frequency distributions of genetic architecture complexity 

of metabolic traits are consistent across different LD window sizes. Distribution of 

mass features in either tissue type is plotted by number of 60 kbps or 360 kbps LD blocks 

they are strongly associated with. The statistical mean of each distribution is given and 

marked by an arrow.
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Supplemental Figure 8. Presence and locations of metabolite QTL hotspots are 

consistent across different chromosome window sizes. The number of mass 

features with at least one of their top 10 or top 50 most strongly associated SNP marker 

located in each 60 kbps or 360 kbps block is plotted for either tissue type.
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