
 1 

Development of the Wheat Practical Haplotype Graph Database as a Resource for 1 

Genotyping Data Storage and Genotype Imputation 2 

Katherine W. Jordan1,2#, Peter J. Bradbury3, Zachary R. Miller4, Moses Nyine1, Fei He1, Max 3 

Fraser5, Jim Anderson5, Esten Mason6, Andrew Katz6, Stephen Pearce6, Arron H. Carter7, 4 

Samuel Prather7, Michael Pumphrey7, Jianli Chen8, Jason Cook9, Shuyu Liu10, Jackie C. Rudd10, 5 

Zhen Wang10, Chenggen Chu10, Amir M. H. Ibrahim10, Jonathan Turkus11, Eric Olson11, 6 

Ragupathi Nagarajan12, Brett Carver12, Liuling Yan12, Ellie Taagen4, Mark Sorrells4, Brian 7 

Ward13, Jie Ren1,14, Alina Akhunova1,14, Guihua Bai2, Robert Bowden2, Jason Fiedler15, Justin 8 

Faris15, Jorge Dubcovsky16, Mary Guttieri2, Gina Brown-Guedira13, Ed Buckler3, Jean-Luc 9 

Jannink3, Eduard D. Akhunov1* 10 

1  Department of Plant Pathology, Kansas State University, Manhattan, KS, USA 11 
2 USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA  12 
3 USDA-ARS, Plant Soil and Nutrition Research Unit, Ithaca, NY, USA 13 
4 Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA 14 
5 Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA  15 
6 Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA  16 
7 Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA  17 
8 Department of Plant Sciences, University of Idaho, Aberdeen, ID, USA  18 
9 Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 19 
USA 20 
10 Department of Soil and Crop Sciences, Texas A&M AgriLife Reseach, Amarillo, TX, USA  21 
11 Department of Plan, Soil and Microbial Sciences, Michigan State University, East Lancing, 22 

MI, USA  23 
12 Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA  24 
13 USDA-ARS, Plant Science Research Unit, Raleigh, NC, USA 25 
14 Integrative Genomics Facility, Kansas State University, Manhattan, KS, USA 26 
15 USDA-ARS, Cereal Crops Research Unit, Fargo, ND, USA  27 
16 Department of Plant Sciences, University of California-Davis, Davis, CA, USA 28 
 29 

Running Title: Wheat Practical Haplotype Graph 30 

Keywords: Wheat, Genotype Imputation, Practical Haplotype Graph, skim-seq, exome capture 31 

Corresponding Author: Eduard Akhunov, Department of Plant Pathology, Kansas State 32 

University, 1712 Claflin Rd, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, 33 

eakhunov@ksu.edu 34 

#KWJ is currently affiliated with USDA-ARS, Hard Winter Wheat Genetics Research Unit, 35 
Manhattan, KS, USA. 36 

 37 

 38 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.10.447944doi: bioRxiv preprint 

mailto:eakhunov@ksu.edu
https://doi.org/10.1101/2021.06.10.447944


 2 

Abstract 39 

To improve the efficiency of high-density genotype data storage and imputation in bread wheat 40 

(Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The wheat PHG 41 

database was built using whole-exome capture sequencing data from a diverse set of 65 wheat 42 

accessions. Population haplotypes were inferred for the reference genome intervals defined by 43 

the boundaries of the high-quality gene models. Missing genotypes in the inference panels, 44 

composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, 45 

genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were 46 

imputed using the wheat PHG database. Though imputation accuracy varied depending on the 47 

method of sequencing and coverage depth, we found 93% imputation accuracy with 0.01x 48 

sequence coverage, which was only slightly lower than the accuracy obtained using the 0.5x 49 

sequence coverage (96.9%). Compared to Beagle, on average, PHG imputation was ~4% (p-50 

value = 0.00027) more accurate, and showed 27% higher accuracy at imputing a rare haplotype 51 

introgressed from a wild relative into wheat. The reduced accuracy of imputation with GBS data 52 

(90.4%) is likely associated with the small overlap between GBS markers and the exome capture 53 

dataset, which was used for constructing PHG. The highest imputation accuracy was obtained 54 

with exome capture for the wheat D genome, which also showed the highest levels of linkage 55 

disequlibrium and proportion of identity-by-descent regions among accessions in our reference 56 

panel. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies 57 

SNPs with a broader range of effect sizes that together explain a higher proportion of genetic 58 

variance for heading date and meiotic crossover rate compared to previous studies.  59 

  60 
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Introduction 61 

For the last 10,000 years, intensive selection of bread wheat, Triticum aestivum, created 62 

varieties adapted to diverse environments and cultivation practices (Balfourier et al. 2019; He et 63 

al. 2019; Walkowiak et al. 2020). Recent advances in crop genomics and the availability of 64 

reference genomes have accelerated the adoption of sequence-based genotyping technologies for 65 

studying the genetics of agronomic traits (Nyine et al. 2019) and local adaptation (He et al. 2019; 66 

Juliana et al. 2019, 2020) and facilitated the introduction of genomics-assisted breeding 67 

strategies into wheat improvement pipelines (Poland and Rife 2012; Isidro et al. 2014). 68 

However, the limited genome coverage provided by these genotyping technologies does not 69 

support exploration of the entire range of genetic effects conferred by all variants, limiting the 70 

utility of the developed genomic diversity and functional genomics resources for understanding 71 

genome-to-phenome connections. 72 

The large size (17 Gb) and complexity of the wheat genome present a substantial 73 

challenge for sequence-based analysis of genetic diversity. Alignment of short sequence reads to 74 

the wheat genome is complicated by high levels of sequence redundancy resulting from two 75 

rounds of recent whole genome duplication (IWGSC, 2018), and the recent propagation of 76 

transposable elements (TEs) comprising nearly 90% of the genome (Wicker et al. 2018). 77 

Therefore, the efforts of the wheat research community were focused primarily on sequencing 78 

complexity-reduced genomic libraries produced by either enzymatic digests or by targeted 79 

sequence capture. These efforts have resulted in a detailed description of the population-scale 80 

haplotypic diversity in the low-copy genomic regions in large sets of genetically and 81 

geographically diverse wheat lines and breeding populations (He et al. 2019; Juliana et al. 2019; 82 

Pont et al. 2019). While these resources have been useful for genotype imputation in populations 83 
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genotyped using either SNP-based arrays or genotyping-by-sequencing (GBS) methods (Jordan 84 

et al. 2015; Shi et al. 2017; Juliana et al. 2019; Nyine et al. 2019), the relatively small number of 85 

shared markers between the reference and inference populations limits the number of imputed 86 

genotypes, thus diminishing the utility of genotype imputation in wheat genetic studies and 87 

breeding. 88 

High-quality reference genomes and a reduction in the cost of sequencing presented 89 

opportunities for the characterization of genetic diversity by direct sequencing of either whole 90 

genomes or genomic regions targeted by sequence capture (Malmberg et al. 2018; He et al. 91 

2019; Walkowiak et al. 2020). While these sequence-based genotyping approaches generate 92 

unbiased information about the genetic variants of various frequency classes and genomic 93 

locations, large-scale population sequencing of species with large genomes, including many 94 

important agricultural crops, remains costly. This issue has been addressed by combining low-95 

coverage sequencing of whole genomes with the prediction of missing genotypes using 96 

imputation tools, thereby increasing the power of association mapping and facilitating the 97 

detection of causal variants (Davies et al. 2016; Das et al. 2018; Rubinacci et al. 2021).  98 

Recently, a novel strategy referred to as Practical Haplotype Graph (PHG), was proposed 99 

to improve the efficiency of sequence-based genotyping data storage and imputing genotypes in 100 

low-coverage sequencing datasets (Jensen et al. 2020; Valdes Franco et al. 2020). The PHG is 101 

capable of storing genotyping data generated using diverse genotyping technologies as a graph of 102 

haplotypes of founder lines and is used for predicting missing genotypes in populations 103 

characterized by various sequence- or array-based genotyping strategies. By reducing the 104 

constraints associated with large-scale genotyping data storage, processing, and utilization, this 105 

tool is another step towards leveraging the existing community-generated genomic diversity 106 
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resources in breeding and research applications. We used skim-seq, whole-exome capture, 107 

genotyping-by-sequencing, and array-based genotyping datasets generated by the USDA-NIFA 108 

WheatCAP to develop a wheat PHG database and evaluate its performance for genotype 109 

imputation in wheat lines of different levels of relatedness and different depths of genome 110 

coverage.  111 

 112 

Methods: 113 

Library prep: DNA was extracted from two-week old leaf tissue of germinated seedlings grown 114 

under greenhouse conditions from breeding programs across the United States (Table S1). DNA 115 

was extracted using Qiagen DNeasy kit following the manufacturer’s protocol. DNA was 116 

quantified with Picogreen (Sage Scientific) and wheat exome capture was performed on each 117 

sample targeting the non-redundant low-copy portion of the genome. Briefly, wheat exome 118 

captures designed in collaboration with Nimblegen targeted 170 Mb of sequence covering about 119 

80,000 transcripts (Krasileva et al. 2017). The barcoded genomic libraries were pooled at 12- or 120 

96-plex levels, and sequenced on NextSeq (Kansas State University Integrated Genomics 121 

Facility) and NovaSeq (Kansas University Medical Center) platforms using 2 x 150 bp read runs 122 

to produce sequence data providing about 30x coverage of the exome capture target space. 123 

Genomic libraries for low-coverage sequencing were prepared for 18 samples from the 124 

NAM18 family (Jordan et al. 2018) using Illumina DNA Prep Kit along with the Illumina’s 125 

Nextera CD adapters.  Sequencing was performed on the Illumina NextSeq platform to produce 126 

~0.1x coverage. 127 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.10.447944doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447944


 6 

Data processing: The quality of sequence reads was assessed using NGSQC toolkit v.2.3.3 (Patel 128 

and Jain 2012). The sequence reads were aligned to the wheat reference genome RefSeq v.1.1 ( 129 

IWGSC, 2018) using HiSat2 (Kim et al. 2015) retaining only uniquely mapped reads. The 130 

resulting alignments were processed using the GATK pipeline (McKenna et al. 2010) to generate 131 

a genome variant call file (g.vcf) for each accession.  132 

The raw variant calls generated by GATK for exome capture data were filtered using 133 

bcftools (Danecek et al. 2021) to retain variants with minor allele frequency > 0.015 and missing 134 

data < 10%. Filtered GATK variants were combined with 90K genotypic data (Wang et al. 135 

2014), producing high quality filtered variants (henceforth, HQ-SNPs) that were used for 136 

assessing the accuracy of the PHG-based imputation. 137 

Wheat PHG database construction: The Wheat PHG database was built using PHG version 138 

0.017. Instructions for creating the PHG along with source code are located with the PHG wiki: 139 

https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home. The approaches and 140 

parameters for constructing the Wheat PHG were discussed and developed during two PHG 141 

workshops organized at Cornell University. The first step of the PHG database construction is to 142 

create reference ranges for data storage and variant imputation (Fig. S1). In this case, 143 

“informative” reference ranges were chosen by extending the high confidence gene model 144 

coordinates from Chinese Spring RefSeq v.1.1 (IWGSC, 2018) 500 bp in each direction. 145 

Adjacent ranges were merged if the boundaries lie within 500 bp from each other. This resulted 146 

in a final set of 106,484 informative reference ranges across the genome from the Chinese Spring 147 

accession, while the rest of the genome was deemed non-informative and represents intergenic 148 

ranges across the genome of Chinese Spring (Fig. S1).  149 
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The second step in the PHG pipeline populates the database with sequence data from 150 

diverse accessions across the reference ranges (Fig. S1). Pre-processed exome capture g.vcf files 151 

for 65 accessions, including 58 Tricitum aestivum accessions, 3 Aegilops tauschii accessions, 3 152 

Triticum turgidum subsp. durum wheat cultivars, and one Triticum turgidum subsp. dicoccum 153 

accession (Table S1) generated by GATK (McKenna et al. 2010) were loaded into the PHG, 154 

creating a database of 6,705,472 haplotypes, which is representative of the diversity across the 155 

wheat breeding programs within the US and breeding lines from the Great Plains region.   156 

The third step of the PHG pipeline is to create consensus haplotypes for the reference 157 

ranges, using the sequence information of the 65 accessions (Fig. S1). This step collapses the raw 158 

haplotypes into consensus haplotypes using a user-defined maximum divergence (mxDiv) 159 

parameter set to 0.0001. This translates into the clustering of raw haplotypes that contain less 160 

than 1 bp divergence per 10,000 bp into a common haplotype. The value of the mxDiv parameter 161 

was based on prior diversity estimates in wheat (Akhunov et al. 2010; Jordan et al. 2015), and 162 

aimed at retaining a manageable number of haplotypes per reference range as described in Jensen 163 

et al. (2020). In addition to the mxDiv parameter, we set minTaxa = 1, which retains haplotypes 164 

present in only one accession and facilitates the imputation of rare haplotypes. Using these 165 

parameters, a total of 712,733 consensus haplotypes were detected, which is approximately 6.7 166 

haplotypes per informative reference range, similar to ~5 haplotypes per reference range reported 167 

in the sorghum PHG (Jensen et al. 2020).  168 

At the imputation step, the low coverage sequence data were aligned to the consensus 169 

haplotypes stored in the PHG database (Fig S1), and a Hidden Markov model was used to infer 170 

the paths through the practical haplotype graph that match the mapped reads while determining 171 

the missing haplotypes. The variants were imputed using the haplotype structure stored in the 172 
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database, and exported as a vcf file. By using minReads = 0 parameter, variant calls were 173 

imputed for all variable positions in the wheat PHG database.   174 

To assess the effect of genome coverage depth on imputation accuracy, we used seqtk (Li 175 

2012) to generate down-sampled datasets from the 170Mb wheat exome capture data 176 

representative of  0.01x (5,667 paired-end (PE) reads per accession), 0.1x (56,667 PE per 177 

accession), and 0.5x (283,333 PE reads per accession) depth of coverage for 20 breeding lines 178 

from the US Great Plains (Table S1). This set of 20 breeding lines included four lines (Duster, 179 

Overley, NuPlains, and Zenda), which were used to build the PHG database.  180 

In addition, we assessed the accuracy of imputation in genotyping datasets generated 181 

using GBS of genomic libraries prepared from MseI-PstI digested DNA (Saintenac et al. 2013) 182 

and whole-genome skim sequencing (Malmberg et al. 2018). We used previously published GBS 183 

data produced for 75 recombinant inbred lines from the wheat nested-association mapping 184 

(NAM) population (Jordan et al. 2018) that included an average of 1.85 million (1x 100bp) reads 185 

per accession. In the current study, we performed the whole-genome skim sequencing on a set of 186 

18 recombinant inbred lines, using 2 x 150 bp sequencing reads providing on average 6.1 million 187 

paired-end reads per accession, which represents ~0.1x genome coverage (Table S2). 188 

PHG Imputation Accuracy: The accuracy of genotype calls for each accession was determined 189 

by dividing the number of matching genotype calls between the HQ-SNPs and the PHG-imputed 190 

SNP data by the total number of overlapped genotype calls. For down-sampled datasets 191 

generated from the exome capture data, imputation accuracy was estimated using nearly 400,000 192 

genotype calls per accession at each sequence coverage level. Imputation accuracy comparisons 193 

by genome, and by MAF category were performed using ANOVA from car and lme4 R 194 
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packages. The imputation accuracy estimates for the GBS and whole-genome skim-sequencing 195 

data were based on approximately 5,000 HQ-SNPs genotype calls per accession. 196 

Comparison of accuracy between Beagle v.5.0 and PHG-based genotype imputation: The 197 

accuracy of PHG genotype imputation was compared to the accuracy of imputation with Beagle 198 

v.5.0. (Browning and Browning 2013). For this purpose, we used the reference panel of 65 199 

accessions that was also utilized to construct the wheat PHG. The genotyping data for a target 200 

panel were generated by calling genotypes using the down-sampled sequence reads following the 201 

same SNP calling procedures described above. The genotype calls were produced for the 20 202 

Great Plains accessions at each genome coverage level. Imputation was performed using Beagle 203 

v.5.0 with the default parameters. The genotype calls imputed with Beagle were compared to the 204 

HQ-SNP dataset (see above) to assess the overall concordance and concordance of minor allele 205 

calls. On average, the estimates of accuracy were based on about 323,000 genotype calls per 206 

accession. Formal comparisons of the imputation accuracy between Beagle v5.0 and PHG 207 

imputation methods by coverage level for 0.01x and 0.1x were performed using paired t-tests in 208 

R. At each coverage level, imputation using PHG was statistically more accurate (0.01x: p-value 209 

= 2.7 x 10-4; 0.1x: p-value = 2.2x 10-7). 210 

Diversity analysis: Diversity statistics (π and Tajima’s D) were estimated using TASSEL v5.2.65 211 

(Bradbury et al. 2007) in sliding windows of 2,000 SNPs per window stepping 1,000 SNPs at a 212 

time, and mean values per genome were calculated. The identity-by-descent (IBD) analysis was 213 

determined using Beagle v.4.1 with the default parameters (Browning and Browning 2013), and 214 

considered to be significant at LOD > 3.0. Overlap between the IBD segments was determined 215 

using the MultiIntersectBed tool of the Bedtools suite v.2.26.0 (Quinlan and Hall 2010). Pairwise 216 

linkage disequilibrium (LD) was determined using PLINK v.1.90b3.45 (Purcell et al. 2007) by 217 
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calculating the coefficients of determination (r2) for all possible pairwise combinations of SNP 218 

sites on the same chromosomes.   219 

Stepwise regression using the PHG imputed markers: The parental lines of a family of 75 220 

recombinant inbred lines (RILs) from the spring wheat NAM panel (Jordan et al. 2018) were 221 

included into the panel of 65 accessions that were used to construct the wheat PHG. We ran PHG 222 

imputation on the GBS data generated for 75 RILs, and imputed genotypes for 1.457 million 223 

sites. These sites were filtered to retain variants that segregate between the parental lines, and 224 

have allele frequencies between 0.35-0.65 in the RIL population. These variants were 225 

subsequently thinned using PLINK (Purcell et al. 2007) to remove markers that had an r2 > 0.6 226 

within a 50 SNP window, stepping 10 SNPs at a time. The resulting set of 9,806 markers with no 227 

missing data was used for stepwise regression mapping performed with the ICIM software 228 

v.4.1.0.0 (Meng et al. 2015) with markers entering and exiting the model with p-value < 0.0001. 229 

The estimates of the Total number of CrossOvers (TCO) and the distal CrossOvers (dCO) were 230 

taken from the previous analyses of the spring wheat NAM population for family NAM1 (Jordan 231 

et al. 2018). Heading dates were measured in three locations for two growing seasons (Montana, 232 

South Dakota, Washington) for the 75 RILs and three checks. Best linear unbiased predicitions 233 

(BLUPs) for each line were estimated using the following linear mixed model with lmer package 234 

in R: 235 

HD = year + location + line + year(location) + line*year 236 

where location, year, and location nested within year are fixed variables, and the line and line-237 

by-year interaction terms are random variables.   238 

 239 
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Results:  240 

The Wheat PHG database development 241 

A wheat PHG database was created using whole-exome capture data from a set of 65 242 

wheat accessions (Table S1) contributed by the major U.S. wheat breeding programs, as well as 243 

the parental lines used for the genetic analyses of the yield component traits in WheatCAP 244 

(www.triticeaecap.org). This set of accessions was selected from a larger diversity panel of 245 

nearly 250 wheat cultivars assembled in coordination with the U.S. wheat breeding programs to 246 

build a genomic resource to be used as a reference panel for genotype imputation. This diverse 247 

set of 65 accessions is comprised of mostly spring and winter bread wheat cultivars, but it also 248 

included three accessions of the diploid ancestor of the wheat D genome, Aegilops tauschii 249 

(accessions TA1615, TA1718, and TA1662/PI603230), and four accessions of tetraploid wheat 250 

(three Triticum turgidum subsp. durum wheat cultivars Langdon, Ben, and Mountrail and one 251 

domesticated emmer, Triticum turgidum subsp. dicoccum, accession PI41025).  252 

For constructing the wheat PHG, the wheat genome was split into a set of informative 253 

reference ranges that represent the high confidence gene models in the IWGSC RefSeq v.1.1 254 

(IWGSC, 2018). By using the predicted gene models to define reference ranges, we aimed to 255 

reduce the impact of erroneous genotype calling associated with the misalignments of sequence 256 

reads to the repetitive portion of the wheat genome (Wicker et al. 2018) on the estimation of 257 

linkage disequilibrium (LD) and detecting haplotype blocks. A total of 106,484 reference ranges 258 

spanning all 21 chromosomes were defined (Fig S1; Table S3), with an average of 5,070 259 

reference ranges per chromosome; chromosome 4D contains the lowest (3,612 ranges) and 260 

chromosome 2B harbors the highest (6,221 ranges) number of reference ranges.  261 
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Using the 65 accessions to populate the wheat PHG database, we discovered 1,473,670 262 

variants across the 106,484 reference ranges, of which 1,457,321 are high quality, bi-allelic 263 

SNPs (Table S3). The inclusion of three diploid Ae. tauschii accessions into the panel increased 264 

the number of variable sites detected in the D genome lineage, which is the least polymorphic 265 

genome in bread wheat (Wang et al. 2013; Jordan et al. 2015; He et al. 2019). Excluding the 266 

variants from Ae. tauschii, we found that 161,226 (31%) sites in the D genome were 267 

monomorphic among the bread wheat cultivars. Similarly, we found that 31,486 SNPs (7%) in 268 

the A genome and 32,228 SNPs (6%) in the B genome are contributed by the domesticated 269 

emmer and durum lines, and are monomorphic in hexaploid wheat. These private SNPs explain 270 

the high levels of divergence between the domesticated emmer and Ae. tauschii accessions from 271 

the hexaploid wheat lines (Fig. 1a). The overall patterns of genetic diversity and allele frequency 272 

distribution in the D genome compared to those in the A and B genomes were consistent with the 273 

population bottleneck (Table 1): 1) diversity mean estimates for the D genome were less than 274 

2.3-fold that of the A and B genomes, (πD = 0.076, πA = 0.175, and πB = 0.182; Table 1), 2) the 275 

estimates of Tajima’s D were lower in the D genome than in the A and B genomes (Tajima’s 276 

DD= -2.19, Tajima’s DA= -0.67, and  Tajima’s DB = -0.55, Table 1), 3) the mean minor allele 277 

frequencies (MAF) were greater in the A and B genomes than in the D genome (MAFA= 0.12, 278 

MAFB= 0.12, and MAFD= 0.05), and 4) LD drops to half of its initial value (r2  0.33) at 20 Mb 279 

in the D genome, whereas in the A and B genomes LD drops to the same level at 12 and 10 Mb, 280 

respectively (Table 1, Figure 1b).   281 

 282 

 283 

 284 
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Table 1. Estimates of genetic diversity (π), minor allele frequency (MAF), Tajima’s D and 285 
linkage disequilibrium in the population used for constructing the Wheat PHG. 286 

Diversity statistic A genome B genome D genome 

No. SNPs 430,050 504,260 523,011 

MAF 0.116 0.122 0.050 

π (per bp) 0.175 0.182 0.076 

Tajima’s D -0.673 -0.552 -2.192 

LD* (r2  0.33) 12.2 Mb 9.8 Mb 20.0 Mb 

*distance at which LD drops to half of its initial value (r2  0.33). 287 

The accuracy and the rate of genotype imputation are affected by the proportion of shared 288 

genetic ancestry among individuals in a population (Browning and Browning 2013). For each 289 

WheatCAP parental line included in the Wheat PHG, we estimated the length of genomic 290 

segments sharing identity-by-descent (IBD) with other lines in the panel. On average, the pairs of 291 

parents had 451 Mb (~3%) of IBD segments (Table S4), suggesting distant relationships among 292 

the WheatCAP parental lines. However, the estimates of the total length of IBD segments among 293 

cultivars were quite variable (Figure 1c). For example, in cultivars Prosper from North Dakota 294 

and Shelly from Minnesota, the length of shared IBD segments was nearly 1.29 Gb (8.6%), 295 

whereas hard winter wheat cultivars Lyman (South Dakota) and Overley (Kansas) shared only 296 

128 Mb (0.85%) of IBD segments. The average length of IBD segments shared by the distantly 297 

related durum wheat and domesticated emmer parents was only 57.6 Mb. Across all breeding 298 

programs, we detected 556 regions sharing IBD, with an average IBD segment length of 12.2 299 

Mb. Over half (53%) of the IBD segments overlapped with a segment from at least one other 300 

breeding program, translating to more than 1.68 Gb of the genome shared between any two 301 

wheat breeding programs. This estimate includes 1.49 Gb of shared IBD in the D genome (89%), 302 

while only 86.4 Mb and 105.7 Mb of IBD with other breeding programs were detected in the A 303 
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and B genomes, respectively. The genomic segments sharing IBD with most of the wheat lines 304 

were located on chromosomes 7D (568 Mb - 571 Mb) and 3D (496.6 Mb - 505 Mb), which were 305 

common to seven breeding programs. 306 

 307 

Figure 1. Genetic diversity of 65 accessions of wheat and its diploid and tetraploid relatives 308 
used for developing the Wheat PHG. a. Neighbor-joining tree of accessions used for 309 

constructing the Wheat PHG. b. The rate of LD decay in the A, B and D genomes of wheat. c. 310 
The length of pair-wise IBD between the parental lines from different breeding programs used in 311 

WheatCAP. 312 

In addition to the WheatCAP lines, we selected 21 hard red winter wheat cultivars from 313 

the U.S. Great Plains for constructing the PHG database (Table S1). Pairwise comparisons 314 

among these lines showed that, on average, they share 416 Mb of IBD segments, with an average 315 

IBD segment length of 13 Mb, and nearly 83% of all shared IBD regions are located in the D 316 

genome (Table S5). This finding is consistent with the lack of diversity among breeding lines in 317 
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the D genome (Chao et al. 2010) and the high levels of shared ancestry among the lines from the 318 

U.S. Great Plains’ breeding programs.  319 

 320 

Genotype imputation using the Wheat PHG  321 

We used several low-coverage sequencing datasets to assess the imputation performance 322 

of the wheat PHG. First, we used 20 spring and winter wheat lines (Table S1) from the U.S. 323 

wheat breeding programs sequenced using the whole-exome capture approach (Krasileva et al. 324 

2017; He et al. 2019) to mimic a low-coverage sequencing experiment. We down-sampled the 325 

raw unmapped Illumina paired-end reads generated for each accession to create datasets with 326 

three levels of sequence coverage depths (0.01x, 0.1x, and 0.5x) for the regions targeted by the 327 

exome capture assay. The accuracy of imputation achieved using the Wheat PHG was estimated 328 

by comparing the concordance of imputed genotype calls with the genotype calls from the HQ-329 

SNP set generated using the 90K iSelect array (Wang et al. 2014) and the high-coverage (20-30x 330 

coverage) exome sequencing.  331 

On average, using 0.5x coverage down-sampled exome capture data, we achieved 96.9% 332 

imputation accuracy, ranging from 95% to 98% among lines (Figure 2a, Table 3). Five- and 333 

fifty-fold reduction in the depth of read coverage for the inference panel did not result in a 334 

substantial reduction in the accuracy of imputation. The mean accuracy of PHG imputation was 335 

96% (94-98% range) with 0.1x coverage depth, and 93% (91-98% range) with as little as 0.01x 336 

coverage depth (Figure 2a, Tables 2 and 3). These results suggest that the imputation method in 337 

the PHG could effectively use 0.01x exome coverage data to adequately capture the haplotypic 338 

diversity of the inference panel to achieve 93% imputation accuracy. The imputation accuracy 339 
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varied among the wheat genomes, likely due to genome-specific differences in the extent of LD 340 

and haplotypic diversity (Jordan et al. 2015). At 0.01x coverage depth, the accuracy of genotype 341 

imputation in the D genome was 95.5%, which was 3.2% and 4.3% more accurate (p-value 342 

(ANOVA)= 3.73x10-5) than imputation in the A (92.3%), and the B genomes (91.2%), respectively 343 

(Table 2; Figure 2b). The higher extent of LD in the D genome appears to contribute to more 344 

accurate genotype imputation compared to that in the A and B genomes, which show faster rates 345 

of LD decay and lower proportions of the genome sharing IBD segments in the panel used to 346 

build the PHG database. 347 

Table 2. The accuracy of PHG imputation in different wheat genomes. 348 

Wheat genomes Exome capture* (0.01x), % GBS*, % skim-seq* (0.1x), % 

Total 92.6 90.4 85.3 

A 92.3 90.9 86.5 

B 91.2 91.1 84.9 

D 95.5 87.4 82.9 

*Accuracies by approach are comprised of different germplasm, EC: n=20, GBS: n=75, skim-seq: n=18 349 

We compared the performance of the wheat PHG to one of the commonly used low-350 

coverage imputation methods implemented in Beagle v5.0 (Browning and Browning 2013). For 351 

this purpose, the panel of 65 accessions included into the wheat PHG database was used as the 352 

reference panel, and an independent set of 20 wheat cultivars from the U.S. wheat breeding 353 

programs was used as the inference panel. Overall, Beagle imputed missing genotypes with 354 

89.2% accuracy for this set of 20 lines at 0.01x coverage (ranging from 76% to 94%), and 92.6% 355 

(ranging from 84% to 95%) at 0.1x coverage (Figure 2a, Table 3). Direct comparisons of 356 

imputation methods show PHG imputation statistically outperformed Beagle imputation by 4% 357 

at both coverage levels (p-value 0.1x (t-test) = 2.0x10-7; p-value 0.01x (t-test) = 2.7x10-4) .  358 
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Table 3. Comparison of imputation accuracy between PHG and Beagle using exome 359 

capture data. 360 

Lines  PHG 0.5x PHG 0.1x PHG 0.01x Beagle 0.1x Beagle 0.01x 

Bolles 97.2% 96.0% 92.2% 93.3% 88.6% 

Duster* 97.8% 97.6% 97.1% 93.0% 89.3% 

Expedition 97.1% 96.1% 93.1% 93.3% 91.0% 

Forefront 96.5% 95.3% 91.0% 91.7% 88.0% 

Goodstreak 97.3% 96.2% 91.3% 93.8% 90.3% 

Ideal 96.4% 95.7% 92.6% 92.6% 89.0% 

Jagger 95.9% 94.4% 90.6% 84.2% 75.6% 

Linkert 96.9% 96.1% 93.3% 93.8% 90.1% 

McGill 96.6% 95.3% 91.4% 92.6% 89.6% 

Mott 97.1% 96.3% 91.8% 93.2% 89.6% 

NuPlains* 98.0% 98.0% 96.7% 94.5% 91.4% 

Overley* 97.1% 97.3% 97.1% 92.9% 89.4% 

Panhandle 96.3% 95.4% 91.8% 92.0% 89.2% 

Prevail 96.8% 95.8% 90.7% 91.8% 89.7% 

Robidoux 97.2% 96.7% 92.7% 94.0% 91.7% 

TAM303 95.6% 94.4% 91.4% 89.5% 87.0% 

Traverse 97.0% 95.6% 91.9% 93.0% 90.3% 

Wesley 97.2% 96.2% 92.9% 94.6% 91.8% 

Yellowstone 95.9% 94.8% 92.0% 94.7% 94.3% 

Zenda* 97.7% 97.7% 97.6% 92.7% 88.9% 

Average 96.9% 96.0% 93.0% 92.6% 89.2% 

* represents cultivars used in PHG database construction   

We conducted the analyses of PHG performance in the datasets down-sampled from 361 

exome capture data generated for four cultivars Duster, Overley, NuPlains, and Zenda, that were 362 

included in the wheat PHG construction. The accuracy of PHG-based imputation for these four 363 

cultivars was statistically higher (ANOVA for different levels of sequence coverage: p-value 0.5x 364 

= 0.004; p-value 0.1x = 2.0 x 10-5; p-value 0.1x = 7.4 x 10-10) than for other cultivars at all levels of 365 

sequence coverage (Fig. S2a). No similar relationship between the presence of specific 366 

haplotypes in the reference panel and imputation accuracy was observed for Beagle. We further 367 

explored this relationship by analyzing genotype imputation results in cultivar Jagger, which 368 

showed a substantial reduction in imputation accuracy in the low sequence coverage datasets 369 

(0.1x and 0.01x coverage) imputed using Beagle (Fig. S2a). We assumed that one of the likely 370 
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factors contributing to the decreased imputation performance of Beagle in cultivar Jagger was 371 

the presence of wild-relative introgression from Ae. ventricosa on chromosome 2A (Cruz et al. 372 

2016). Because cultivar Overley, which was used to build the PHG database, also carries this Ae. 373 

ventricosa introgression (Cruz et al. 2016), we could evaluate the impact of the presence of the 374 

rare introgressed haplotype in both the PHG database and the Beagle’s reference panel on 375 

imputation accuracy. The chromosome-by-chromosome assessment of imputation accuracy for 376 

cv. Jagger in the 0.01x coverage dataset showed modest accuracy (90%) for chromosome 2A 377 

using PHG. However, for the same chromosome, the imputation accuracy of Beagle reached 378 

only 63% (Fig. S2b). The accuracy of Beagle imputation was also low for other chromosomes 379 

(2D, 6A, 7A) (Fig. S2b), which suggests that cv. Jagger likely carries other regions with unique 380 

haplotypes (Kippes et al. 2018; Walkowiak et al. 2020) poorly represented in the reference set 381 

used for Beagle imputation. For the same three chromosomes, the accuracy of PHG imputation 382 

was higher than that obtained using Beagle, indicating that PHG is more effective at utilizing the 383 

rare haplotypes in the reference panel for imputation than Beagle. 384 

 385 

Figure 2. The accuracy of imputation using the wheat PHG. a. The impact of sequence 386 
coverage and the method of imputation on accuracy, (EC: n=20; GBS: n=75; skim-seq: n=18) b. 387 

Accuracy of imputation in the A, B and D genomes of wheat using exome capture (EC), GBS 388 
and whole genome skim-seq data. c. Accuracy of imputation for alleles with different minor 389 
allele frequency.  390 

 391 
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Imputation accuracy with reduced coverage sequencing data 392 

To this point, we tested the imputation accuracy using the same type of genomic data 393 

(whole-exome capture) as was used to populate the database. We also evaluated the utility of the 394 

developed PHG database for imputing genotypes in the inference panels genotyped using two 395 

cost-effective complexity-reduced sequencing approaches, genotyping-by-sequencing (GBS) 396 

(Elshire et al. 2011; Saintenac et al. 2013) and whole-genome skim-seq (Malmberg et al. 2018). 397 

First, utilizing GBS reads generated for a set of recombinant inbred lines (RILs) from the spring 398 

wheat NAM panel (Jordan et al. 2018), we performed genotype imputation at 1.4 million 399 

variable sites. The parents of these NAM RILs were included into the wheat PHG construction. 400 

The mean accuracy of imputation across the 75 RILs was 90.4%, ranging from 89 - 91.4% across 401 

individual lines (Figure 2a, Table S6). These estimates of accuracy were only slightly lower than 402 

those observed for the imputed genotypes in the down-sampled exome capture data, and likely 403 

explained by the relatively small overlap (~5%) between the sites in the GBS and exome capture 404 

datasets (Jordan et al. 2015). Overall, this result indicates that the PHG based on the panel of 405 

wheat lines re-sequenced by exome capture assay provides accurate imputation on the inference 406 

population characterized by complexity-reduced sequencing approaches similar to the GBS 407 

method.  408 

We also evaluated the wheat PHG in a set of NAM RILs genotyped using the whole-409 

genome skim-seq approach. The genomic libraries generated for a set of RILs from the spring 410 

wheat NAM population (Jordan et al. 2018; Blake et al. 2019) were sequenced on an Illumina 411 

sequencer (2 x 150 bp run) to provide ~0.1x genome coverage. The accuracy of PHG-imputed 412 

genotypes in the skim-seq dataset (85.3%) was lower than that obtained for genotypes in either 413 

the exome capture or GBS datasets. This lower accuracy likely is associated with a lower 414 
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proportion of skim-seq reads, mostly represented by reads from the repetitive regions, uniquely 415 

mapped to the wheat genome compared to the proportion of uniquely mapped reads from the 416 

exome capture and GBS datasets, which are enriched for the low-copy genomic regions 417 

(Saintenac et al. 2013; Jordan et al. 2015). The accuracy of imputation varied across different 418 

SNP frequency classes. For SNPs with MAF > 0.1, the accuracy of imputation improved by at 419 

least 5% for both GBS and skim-seq genotypes. The accuracy reached nearly 90% for skim-seq 420 

and 93% for GBS datasets when the MAF were  > 0.2 (Table 4, Figure 2c).    421 

Table 4. Relationship between minor allele frequency and the accuracy of imputation. 422 

 423 

 Minor Allele Frequency (MAF) 

 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 

No. Sites 1,029,330 156,251 97,013 73,001 66,296 

GBS Accuracy 0.8798 0.9326 0.9309 0.9209 0.9249 

skim-seq Accuracy 0.8026 0.8570 0.8764 0.8798 0.8886 

 424 

Genetic analyses of trait variation using the imputed genotypes 425 

The ability to accurately impute genotypes across the genome in low-coverage 426 

sequencing datasets provides a cost-effective means for advancing the genetic dissection of trait 427 

variation. We used the imputed genotypes to assess the genetic contribution to heading date 428 

(HD) variation in the nested association mapping (NAM) family previously used for studying the 429 

genetics of recombination rate variation in wheat (Jordan et al. 2018). A stepwise regression 430 

(SR) was applied to identify variants associated with phenotypic variation. Before mapping, co-431 

segregating redundant markers were removed, resulting in nearly 10,000 markers with no 432 

missing data. The SR method identified 11 SNPs together explaining 90% of the variance in 433 

heading date, which was measured over two years at three locations (Fig 3, Table S7). Among 434 
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these SNPs are loci with modest effect sizes located on the long arms of chromosomes 5A and 435 

5D, within 10 Mb from the Vrn-A1 and Vrn-D1 loci, which play a major role in the regulation of 436 

flowering in wheat (Distelfeld et al. 2009). In addition, significant SNPs on chromosomes 1B 437 

and 1D were mapped to the regions within 50 Mb of the Elf-3 gene, which is associated with the 438 

transition from vegetative to reproductive growth in wheat (Alvarez et al. 2016; Zikhali et al. 439 

2016). 440 

We also used the imputed genotypes to revisit the genetic analysis of meiotic crossover 441 

rate variation in the wheat NAM population (Jordan et al. 2018; Blake et al. 2019). In the 442 

previous study, using a limited number of SNPs genotyped using the 90K iSelect array and GBS, 443 

we performed SR analysis and identified 15 and 12 SNPs associated with variation in the total 444 

number of crossovers (TCO) and the number of distal crossovers (dCO), respectively (Jordan et 445 

al. 2018). The identified SNPs explained 48.6% of the variation for TCO and 41% of the 446 

variation for dCO. Using the PHG imputed genotypes, we mapped 16 SNPs that together 447 

explained 91% of the variance for TCO per line and 12 SNPs explaining 80% of the variance for 448 

dCO (Fig. 3, Table S7). Compared to the previous study, SR analyses based on the PHG imputed 449 

SNPs detected additional loci with smaller effects on crossover rate (Jordan et al. 2018). As a 450 

result, the average effect size estimates for TCO and dCO were 2.5 COs and 1.5 COs, 451 

respectively. These estimates were lower than the previously reported average effect sizes of 452 

3.36 COs for TCO and 2.3 COs for dCO (Jordan et al. 2018). Taken together, these results 453 

indicate that the increase in marker density after imputation using the wheat PHG helped to 454 

identify new loci with a broader range of effect sizes that together explain a higher proportion of 455 

genetic variance compared to the previous study (Jordan et al. 2018).  456 
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 457 

Figure 3. Relationship between the true and predicted phenotypes. Significant markers were 458 
identified by stepwise regression on heading date, total numer of crossovers per line (TCO), and 459 

total number of distal crossovers per line (dCO) phenotypes.  460 

 461 

Discussion: 462 

We constructed a wheat PHG database using wheat lines from the major U.S. breeding 463 

programs and demonstrated that PHG combined with inexpensive low-coverage genome 464 

sequencing could be used to impute genotypes with high accuracy, sufficient to identify variants 465 

with smaller effects and support high-resolution mapping studies. Our analyses suggest that the 466 

wheat PHG has the potential to effectively utilize community-generated whole-exome capture 467 

datasets, currently including thousands of diverse wheat accessions from different geographic 468 

regions (Molero et al. 2018; He et al. 2019; Pont et al. 2019), to create a global resource for 469 

imputing genotypes. The imputation accuracy provided by the PHG in populations genotyped 470 

using the skim-seq, GBS, as well as low-coverage exome sequencing approaches varied, but 471 

overall were comparable, indicating that the marker density in the large populations of wheat 472 

lines previously genotyped using these methods could be substantially increased by imputation 473 

with this newly developed wheat PHG tool. 474 

The accuracy of PHG imputation compared favorably with the commonly used 475 

imputation tool Beagle v.5.0 (Browning and Browning 2013), which imputed genotypes with 4% 476 
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lower accuracy at 0.01x and 0.1x genome coverage than the wheat PHG. In previous studies, 477 

imputation of exome capture data with Beagle in populations genotyped using the 90K SNP 478 

array and GBS was 93-97% (Jordan et al. 2015) and 98% (Nyine et al. 2019), respectively. 479 

These estimates of accuracy are slightly higher than those obtained in our current study, but 480 

overall are comparable, and likely associated with filtering applied to reduce the proportion of 481 

missing data in the imputed datasets (Nyine et al. 2019), and with the inclusion of more common 482 

variants from the array-based genotyping methods. Compared to the imputation accuracy of 483 

sorghum (94.1%) and maize (92-95%) PHGs (Jensen et al. 2020; Valdes Franco et al. 2020), our 484 

estimates of accuracy were slightly lower and likely caused by genotyping errors associated with 485 

the misalignment of short reads to the more complex, highly repetitive, allopolyploid wheat 486 

genome. The higher imputation accuracy in the low-coverage datasets down-sampled from the 487 

whole exome capture compared to the accuracy of whole genome skim-seq datasets, which are 488 

mostly composed of reads from the repetitive regions of the wheat genome, supports this 489 

explanation. 490 

The imputation accuracy among different allele frequency classes improves with an 491 

increase in the allele frequency and is higher for a reference allele than for an alternative allele. 492 

Consistent with these expectations, the accuracy of imputation in the GBS dataset improved from 493 

87.9% for SNPs with MAF < 0.1 to 92.5% for SNPs with MAF > 0.4, and in the skim-seq 494 

dataset from 80.3% for SNPs with MAF < 0.1 to 88.9% for SNPs with MAF >0.4. Previous 495 

studies showed that an increase in the reference population size also increases the probability of 496 

capturing rare alleles and substantially improves the imputation accuracy of rare variants (Shi et 497 

al. 2017; Das et al. 2018). Our results suggest that the wheat PHG appear to be more effective at 498 

utilizing rare haplotypes included into the reference panel for genotype imputation than the 499 
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commonly used low-coverage imputation method from Beagle. This was demonstarated by 500 

imputing genotypes on chromosome 2A, which carries introgression from Ae. ventricosa in 501 

cultivar Jagger (Cruz et al. 2016). The inclusion of genotyping data from cultivar Overley, which 502 

also carries this Ae. ventricosa introgression, into the PHG database was sufficient for accurate 503 

imputation in Jagger. In spite of including genotyping data from cultivar Overley into the 504 

reference panel, Beagle imputation of chromosome 2A genotypes in cultivar Jagger was lower 505 

compared to PHG. Further efforts aimed at broadening the diversity of accessions in the wheat 506 

PHG, including wheat lines carrying known introgressions from wild reatives, will be needed to 507 

improve the utility PHG tool for genotype imputation in wheat germplasm. 508 

The application of imputed genotypes to the genetic analyses of trait variation in the 509 

wheat NAM population showed that an increase in marker density increases the number of loci 510 

associated with trait variation and detects alleles that have smaller effects on phenotypes (e.g., 511 

recombination rate) than those previously detected using lower density marker sets. The increase 512 

in the number of significant loci also resulted in a higher proportion of genetic variance (80-513 

91%) in recombination rate and heading date being explained, suggesting that the imputed 514 

genotypes are better at capturing the genetic architecture of these traits, and have the potential to 515 

identify more adaptive and beneficial genetic targets in breeding programs. 516 
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