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ABSTRACT 
Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the 

characterization of their genetic architectures remains challenging. Previous studies of hybrid 

maize have shown the contribution of within-locus complementation effects (dominance) and 

their differential importance across functional classes of loci. However, they have generally 

considered panels of limited genetic diversity and have shown little benefit from genomic 

prediction based on dominance or functional enrichments. This study investigates the relevance 

of dominance and functional classes of variants in genomic models, for agronomic traits in 

diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines 

crossed with 2 testers representative of the major heterotic groups in the U.S. (1106 hybrids), as 

well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We 

investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield 

(GY). Our results point to the presence of dominance for all traits, but, also, among-locus 

complementation (epistasis) for DTS and genotype-by-environment interactions for GY. 

Consistently, dominance improved genomic prediction for PH only. In addition, we assessed 

enrichment of genetic effects in classes defined by genic regions (gene annotation), structural 

features (recombination rate and chromatin openness), and evolutionary features (minor allele 

frequency and evolutionary constraint). We found support for enrichment in genic regions and 

subsequent improvement of genomic prediction for all traits. Our results suggest dominance and 

gene annotations improve genomic prediction diverse populations in hybrid maize. 

  



INTRODUCTION 

Since the development of the first maize hybrids by Shull (1908) and their widespread adoption 

starting in the 1930s, hybrids have been central to the improvement of maize in the U.S. 

Prevailing hypotheses about their advantage have focused on genomic complementation of 

parental genomes (Crow 1998). The basis for such complementation consists of non-additive 

genetic effects, particularly dominance (within-locus complementation, i.e., interaction between 

alleles within single genetic loci) and epistasis (among-locus complementation, i.e., interactions 

involving multiple genetic loci). Dominance was proposed as a major driver of genomic 

complementations in maize hybrids (Crow 1998, Lamkey and Edwards 1999). Epistasis also 

provides a plausible explanation for genomic complementation, but studies assessing its 

contribution to hybrid advantage have suffered from a lack of statistical power (Reif et al. 2005) 

and have reported conflicting results (e.g., Mihaljevic et al. 2005, Ma et al. 2007).  

Genetic studies in maize have investigated dominance gene action by focusing either on 

directional dominance (consistent dominance effects across loci), effects of significant 

quantitative trait loci (QTL), or genome-wide polygenic effects. Studies on testcrosses or diallel 

mating designs seem to support the presence of directional dominance, particularly for grain 

yield (Reif et al. 2003, Hinze and Lamkey 2003). Furthermore, studies on populations derived 

from backcrosses between recombinant inbred lines and their parents have generally identified 

several QTL with significant dominance effects for traits such as flowering time, plant height, 

and grain yield (e.g., Frascaroli et al. 2007, Larièpe et al. 2012). However, genomic prediction 

analyses often did not show the contribution of dominance effects to genotypic variability, 

because they focused on populations of hybrids obtained from crosses between heterotic groups: 

Flint and Dent (e.g., Technow et al. 2014) or Stiff Stalk and non-Stiff Stalk (e.g., Kadam et al. 

2016). Assessing the relevance of dominance effects in genomic prediction models would 

require more diverse panels in which complementation effects are more variable, due to 

differential degrees of complementarity within and across heterotic groups (Reif et al. 2005, 

Gerke et al. 2015). 

 The studies above have examined the relative importance of additive and dominance 

effects across the genome, but have not attempted to describe the properties of loci most enriched 

for causal variants: gene proximity, structural features, and/or evolutionary features. Gene 

proximity has been linked to causal variants in maize through enrichment for QTL effects in 



genic regions (Wallace et al. 2014), consistent with a large portion of variability of gene 

expression being attributed to cis polymorphisms in maize (Schadt et al. 2003). Structural 

features such as chromatin openness and high recombination rate were also associated with 

enrichment for QTL effects in maize inbred lines (Rodgers-Melnick et al. 2016), but studies on 

hybrids have also shown that dominance effects could locate around centromeres, where 

recombination is low (Larièpe et al. 2012, Thiemann et al. 2014, Martinez et al. 2016). 

Evolutionary features reflecting low allelic diversity within species (allele frequency or 

nucleotide diversity) and across species (evolutionary constraint) have been associated with 

stronger QTL effects in hybrid maize (Mezmouk and Ross-Ibarra 2014, Yang et al. 2017). 

Importantly, structural and evolutionary features have also been associated with gene proximity 

(Beissinger et al. 2016, Rodgers-Melnick et al. 2016). Therefore, there is ambiguity about the 

relevance of evolutionary and structural features to capture variability at agronomic traits 

independently from gene proximity.  

In this study, we characterized the genetic basis of three agronomic traits (days to silking, 

plant height, and grain yield) in panels representative of diversity in North-American hybrid 

maize. We analyzed two hybrid panels. One was derived from crosses between a diverse sample 

of maize inbred lines and either of two testers, B47 and PHZ51, belonging respectively to the 

Stiff Stalk (SS) and non-Stiff Stalk (NSS) heterotic groups. The other was derived from crosses 

between the US Nested Association Mapping (NAM) panel and PHZ51. Our study investigated 

the determinants of genotypic variability in hybrid maize, based on gene action (additive and/or 

dominance effects) or functional enrichments (by gene proximity and structural or evolutionary 

features) (Figure 1). 



 

Figure 1 – Graphical summary of the study. We tested hypotheses regarding the statistical 

importance of two attributes about genomic variability in hybrid maize: (1) dominance effects; 

(2) functional enrichment of genetic effects in genic regions. Under each hypothesis, evidence 

from analyses is characterized as consistent (+) or inconsistent (-). Non-conclusive evidence is 

either due to absence of QTL (No QTL) or lack of significance (N.S.). 



MATERIAL AND METHODS 

Phenotypic data 

Phenotypic measurements 

In this study, two panels of maize lines were evaluated for hybrid performance: the NCRPIS 

association panel (hereafter, Ames) and the nested association mapping panel (hereafter, NAM). 

The Ames panel is a subset of temperate inbred lines from the diversity panel described by 

Romay et al. (2013); the NAM panel is a subset of 24 recombinant inbred line (RIL) populations, 

all having one parent in common, B73, as described by McMullen et al. (2009). 

The hybrid Ames panel (Ames-H) was derived from a subset of 875 inbred lines which 

were selected to reduce differences in flowering time while favoring genetic diversity based on 

pedigree. Two inbred lines were selected as testers: one NSS inbred (PHZ51) and one SS inbred 

(B47, also known as PHB47). Inbreds were assigned to one or two testers based on known 

heterotic group: SS inbreds were crossed with PHZ51, while NSS inbreds were crossed with 

B47; inbreds with unknown heterotic group, as well as inbreds belonging to the Goodman 

association panel (Flint-Garcia et al. 2005) were crossed with both testers, for a total of 1,111 

hybrids. The hybrid NAM panel (NAM-H) was developed as described by Larsson et al. (2017). 

Briefly, a subset of up to 80 RILs from each of the NAM families was selected to reduce 

differences in flowering time across families: the later RILs from the earliest families and the 

earlier RILs from the latest families, for a total of 1,799 RILs. All NAM RILs were crossed with 

the same tester, PHZ51. 

In Ames-H, evaluations were performed in 2011 and 2012, in six locations across the US 

– Ames (IA), West Lafayette (IN), Kingston (NC), Lincoln (NE), Aurora (NY), and Columbia 

(MO) – for a total of nine environments: 11IA, 11IN, 11NC, 11NE, 11NY, 11MO, 12NE, 12NC, 

and 12MO. In NAM-H, hybrids were evaluated in five locations – Ames (IA), West Lafayette 

(IN), Kingston (NC), Aurora (NY), and Columbia (MO) – during 2010 and 2011 for a total of 

eight environments: 10IA, 10IN, 10NC, 10MO, 11IA, 11IN, 11NC, and 11NY. The following 

traits were measured in each hybrid panel: days to silking (number of days from planting until 

50% of the plants had silks; DTS), plant height (cm from soil to flag leaf; PH), and grain yield 

(t/ha adjusted to 15.5% moisture; GY). In 11NY, only PH and DTS were measured (Table 1). 



Both Ames-H and NAM-H panels were planted in two-row plots (40-80 plants per plot; 50,000 

to 75,000 plants per hectare), except for 11NY, where 12 plants were planted per plot. 

Phenotypic evaluations were conducted under augmented block designs, where blocking 

was used to reduce competition for light due to heterogeneous height and/or phenology (only 

checks were replicated within environments). In Ames-H, blocks were combinations of tester 

(PHZ51 or B47), maturity (early or late) and expected plant height (short, medium, or tall); 

checks were B73×PHZ51 (≤ 6 replicates per block) as well as PHZ51×B47, B47×PHZ51, and a 

maturity commercial check (each replicated once per block). In NAM-H, blocks were NAM 

families; checks were B73×PHZ51 (≤ 15 replicates per block) and the non-B73 parent crossed 

with PHZ51 (≤ 7 replicates per block) (Larsson et al. 2017). 

Genotype means and heritability 

For each combination of panel (Ames-H or NAM-H) and trait (DTS, PH, or GY), genotype 

means of hybrids were estimated by the following linear mixed model, fitted by ASREML-R 

v3.0 (Butler et al. 2009):  

𝑦𝑖𝑗𝑘𝑙 = 𝑔𝑖 + (𝐸𝑛𝑣. )𝑗𝑘 + (𝐹𝑖𝑒𝑙𝑑)𝑗𝑘𝑙 + 𝑠𝑖𝑗𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙  

where 𝑔𝑖 was the mean of genotype i [fixed], (𝐸𝑛𝑣. )𝑗𝑘 was the effect of location j and year k 

[random, independent, and identically normally distributed (i.i.d.)], (𝐹𝑖𝑒𝑙𝑑)𝑗𝑘𝑙 was the effect of 

field l within environment jk [random, i.i.d.], 𝑒𝑖𝑗𝑘𝑙 was the error [random, i.i.d.], and 𝑠𝑖𝑗𝑘𝑙 was a 

spatial effect within environment-field combinations [random, normally distributed under first-

order autoregressive covariance structures by row and column]. Since genotypes were not 

replicated within environments, genotype-by-environment interactions were pooled with errors. 

For PH in both panels, spatial effects were not included in the model because the fitting 

algorithm could not converge to a solution. For GY in both panels, DTS measurements [fixed] 

were included in the model to account for phenological differences among lines. In addition to 

estimating genotype effects (𝑔𝑖’s) as fixed, models with genotype effects as random were also 

fitted to estimate genotypic variance (𝜎𝑔
2) and error variance (𝜎𝑒

2). Broad-sense heritability on a 

plot basis was then calculated as 𝐻2 =
𝜎𝑔

2

𝜎𝑔
2+𝜎𝑒

2. Finally, the average entry-mean reliability was 

estimated as 𝑟𝑔
2 = 1 −

1

𝑛
∑

Var(𝑔𝑖−𝑔̂𝑖)

𝜎𝑔
2

𝑛
𝑖=1 , where n is the number of hybrids evaluated in either 



panel and Var(𝑔𝑖 − 𝑔̂𝑖) is the prediction error variance of the random genotype effect for hybrid 

i (Searle et al. 2009). 

Genotypic data 

Marker data 

Marker scores (allele counts) at whole-genome-sequencing (WGS) SNPs in the Ames and NAM 

inbred panels were imputed from genotyping-by-sequencing (GBS) SNPs (Romay et al. 2013, 

Rodgers-Melnick et al. 2015), based on WGS SNPs in the Hapmap 3.2.1 reference panel 

(Bukowski et al. 2018), under version 4 of the B73 reference genome. Then, marker scores at 

WGS SNPs were inferred in Ames-H and NAM-H hybrids based on markers scores at their 

respective parents in the Ames and NAM inbred panels. 

In the Ames and NAM inbred panels, GBS SNPs were called with the software TASSEL 

v5.0 (Bradbury et al. 2007) using the GBS production pipeline and the ZeaGBSv2.7 Production 

TOPM (Glaubitz et al. 2014). In the Hapmap 3.2.1 reference panel, WGS SNPs were processed 

as follows: 25,555,019 SNPs were selected (2 alleles per SNP, call rate ≥ 50%, and minor allele 

count ≥ 3), heterozygous marker scores were set to missing (since these were presumably due to 

errors or collapsed paralogous loci), and their missing marker scores were imputed. Marker 

scores at WGS SNPs in the Ames and NAM inbred panels were then imputed based on GBS 

SNPs (separately by panel), using the Hapmap 3.2.1 panel WGS SNPs as reference. Imputations 

of marker scores at WGS SNPs were performed by BEAGLE v5 (Browning and Browning 

2018), with 10 burn-in iterations, 15 sampling iterations, and effective population size set to 

1,000. 

After imputation, m = 12,659,487 WGS SNPs were selected for estimated squared 

correlation between imputed and actual marker scores (≥ 0.8; Browning and Browning 2009) and 

minor allele frequency (≥ 0.01), in each combination of inbred panel and tester (e.g., set of Ames 

inbreds crossed to PHZ51), to avoid SNPs private to any of these sets. Marker scores at selected 

WGS SNPs were then inferred for each hybrid by CreateHybridGenotypesPlugin in TASSEL 

v5.0. The marker data at selected WGS SNPs in Ames-H (n = 1106) and NAM-H (n = 1640) 

consisted of the matrix X of minor-allele counts, where minor alleles were defined by 

frequencies in the Hapmap 3.2.1 panel, and the matrix Z of heterozygosity, which coded 

homozygotes as 0 and heterozygotes as 1. 



Population principal components 

Principal component analysis (PCA) was performed using the R package irlba v2.3.3 (Baglama 

and Reichel 2005) in the Goodman panel representing the genetic diversity among elite maize 

inbred lines (Flint-Garcia et al. 2005). The first three principal components (PCs) were computed 

based on allele counts at selected WGS SNPs (4.7%, 3.2% and 2.1% of genomic variability 

explained in the Goodman panel, respectively). The matrix P of coordinates at the first three PCs 

in Ames-H and NAM-H was obtained by (i) adjusting allele counts by their observed mean in the 

Goodman panel, and (ii) mapping adjusted allele counts to PCs by SNP loadings, i.e., 𝐏 =

(𝐗 − 𝐌)𝐕, where 𝐗 − 𝐌 is the matrix of adjusted allele counts in hybrid panels and V is the 

𝑚 × 3 matrix of right-singular vectors from the PCA. 

Functional features 

Gene annotation: proximity to genes 

Gene positions were available from v4 gene annotations, release 40 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-

40/gff3/zea_mays/Zea_mays.AGPv4.40.gff3.gz). Gene proximity bins (either ‘Proximal’ or 

‘Distal’) indicated whether any given SNP was within 1 kb of an annotated gene (less than 1 kb 

away from start or end positions). 

Structural features: recombination rate and chromatin openness 

Published recombination maps identified genomic segments originating from either parent within 

the progeny of each NAM family (Rodgers-Melnick et al. 2015). These maps were uplifted to 

version 4 of the reference genome using CrossMap v0.2.5 (Zhao et al. 2014). Then, the 

recombination fractions were fitted on genomic positions by a thin-plate regression spline model, 

using the R package mgcv v1.8-27 (Wood 2003). Based on this model, recombination rates c 

were inferred by finite differentiation of fitted recombination fractions: 𝐜 = 𝑓 (𝐬 +
1

2
) −

𝑓 (𝐬 −
1

2
), where 𝐬 is the vector of genomic positions of all WGS SNPs, and f is the function 

inferred by the spline model. We defined recombination bins as follows: cj ≤ 0.45 cM/Mb, 0.45 

cM/Mb < cj ≤ 1.65 cM/Mb, and 1.65 cM/Mb < cj, where 0.45 cM/Mb and 1.65 cM/Mb are the 

first two tertiles of estimated recombination rates among all WGS SNPs. 

ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/zea_mays/Zea_mays.AGPv4.40.gff3.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-40/gff3/zea_mays/Zea_mays.AGPv4.40.gff3.gz


Chromatin accessibility was measured by micrococcal nuclease hypersensitivity (MNase HS) in 

juvenile root and shoot tissues in B73 (Rodgers-Melnick et al. 2016). Here, MNase HS peaks 

were mapped to their coordinates in version 4 of the reference genome. A given SNP was 

considered to lie in a euchromatic (open) region if a MNase HS peak was detected, in either root 

or shoot tissues. We defined MNase HS bins as ‘Dense’ or ‘Open’ for the absence or presence of 

MNase HS peaks, respectively. 

Evolutionary features: minor allele frequency and evolutionary constraint 

Minor allele frequencies (MAF) at SNPs were determined based on the Hapmap 3.2.1 panel. 

Similarly to Evans et al. (2018), we defined MAF bins as follows: MAF ≤ 0.01, 0.01 < MAF ≤ 

0.05, and 0.05 < MAF (SNPs were not binned at MAF ≤ 0.0025 due to only 7,202 of them 

falling into this class). 

Evolutionary constraints at SNPs were reflected by genomic evolutionary rate profiling (GERP) 

scores (Davydov et al. 2010), derived from a whole-genome alignment of 13 plant species 

(Rodgers-Melnick et al. 2015, Yang et al. 2017), in version 4 of the reference genome. We 

defined GERP score bins by GERP ≤ 0 and GERP > 0. 

Genomic models  

Polygenic additive effects (GBLUP) 

Genome-wide additive effects were estimated under a genomic BLUP (GBLUP) model 

(VanRaden 2008), as follows: 

𝐠 = 𝐐𝛅 + 𝐮 + 𝛆; 𝐮 ~ 𝑁(𝟎, 𝐆𝜎𝑢
2), 𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀

2), 𝐆 = 𝐗𝐗′ 𝑚⁄    

where g was the vector of genotype means; 𝐐 = [𝟏 𝐏] was the matrix consisting of a vector of 

ones and the three PCs as described above; 𝛅 were fixed effects associated to Q; u and 𝛆 

consisted of polygenic additive effects and random errors, respectively; X was the (non-centered) 

matrix of minor-allele counts at 𝑚 = 12,659,487 WGS SNPs as described above. The GBLUP 

model was fitted in Ames-H or NAM-H, by restricted maximum likelihood (REML) using the R 

package regress v1.3-15 (Clifford and McCullagh 2005). 



Polygenic additive and dominance effects (DGBLUP) 

To account for dominance, the GBLUP model was extended to the dominance GBLUP 

(DGBLUP) model, as follows: 

𝐠 = 𝐐𝛅 + 𝐮 + 𝐰 + 𝛆; 𝐮 ~ 𝑁(𝟎, 𝐆𝜎𝑢
2), 𝐰 ~ 𝑁(𝟎, 𝐃𝜎𝑤

2 ), 𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀
2), 𝐆 = 𝐗𝐗′ 𝑚⁄ , 𝐃 =

𝐙𝐙′ 𝑚⁄   (1) 

where w consisted of polygenic dominance effects; Z was the (non-centered) matrix of 

heterozygosity at 𝑚 = 12,659,487 WGS SNPs as described above. Notably, in NAM-H, 

additive effects were completely confounded with dominance effects, because only one inbred 

tester was used in this panel (and only two genotype classes could exist at any given marker). 

Therefore, model (1) was fitted only in Ames-H, by REML using the R package regress v1.3-15 

(Clifford and McCullagh 2005). 

Directional effects 

Under a simple dominance model without linkage or epistasis, inbreeding depression is 

characterized by a linear negative relationship between the inbreeding coefficient and fitness 

(Falconer and Mackay 1996). In the presence of directional epistatic effects, the relationship 

between the inbreeding coefficient and fitness is expected to be nonlinear (Crow and Kimura 

1970). To capture such nonlinearity, especially dominance×dominance epistasis, the quadratic 

effect of the inbreeding coefficient was fitted along with its linear effect, in genomic models. We 

followed Endelman and Jannink (2012) to estimate genomic inbreeding coefficients with respect 

to a base population, here represented by the Goodman panel. For each hybrid i, the coefficient 

of genomic inbreeding was calculated as 𝐹𝑖 =
∑ (𝑥𝑖𝑗−2𝜋𝑗)

2
𝑗

∑ 2𝜋𝑗(1−𝜋𝑗)𝑗
− 1, where 𝜋𝑗 was the allele frequency 

in the Goodman panel. 

Directional effects of inbreeding were analyzed as fixed effects under an extension of the 

DGBLUP model (1). The following model was fitted: 

𝐠 = 𝐐𝛅 + 𝐑𝛕 + 𝐮 + 𝐰 + 𝛆; 𝐮 ~ 𝑁(𝟎, 𝐆𝜎𝑢
2), 𝐰 ~ 𝑁(𝟎, 𝐃𝜎𝑤

2 ), 𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀
2), 𝐆 = 𝐗𝐗′ 𝑚⁄ , 𝐃 =

𝐙𝐙′ 𝑚⁄   (2) 



where R consisted of genomic inbreeding values (linear and quadratic); 𝛕 were fixed effects 

associated to R. Significance of 𝛕 estimates was assessed by Wald tests. Model (2) was fitted in 

Ames-H, by REML using the R package regress v1.3-15 (Clifford and McCullagh 2005). 

Oligogenic effects (GWAS) 

To assess marginal additive effects (𝛽𝑗, fixed, for each SNP j), the following model was fitted in 

Ames-H or NAM-H: 𝐠 = 𝐐𝛅 + 𝐱𝑗𝛽𝑗 + 𝐮 + 𝛆; 𝐮 ~ 𝑁(𝟎, 𝐆𝜎𝑢
2), 𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀

2), 𝐆 = 𝐗𝐗′ 𝑚⁄ . 

Significance of SNPs was assessed by Wald tests on estimates of 𝛽𝑗. False discovery rates (FDR) 

were estimated based on p-values from Wald tests by the method of Benjamini and Hochberg 

(1995). In addition, posterior inclusion probabilities (PIP) were estimated by Bayesian sparse 

linear mixed models (BSLMM), fitted jointly on the whole matrix X by GEMMA v0.98.1, with 

1,000,000 and 10,000,000 MCMC iterations for burn-in and sampling, respectively (Zhou et al. 

2013). Window posterior inclusion probabilities (WPIP) were subsequently estimated, following 

Guan and Stephens (2011), by summing PIPs in 500-kb windows, sliding by 250-kb steps. The 

most significant marker effects were then selected for FDR ≤ 0.05 and WPIP ≥ 0.5. 

To assess additive and dominance effects (𝛽𝑗 and 𝜃𝑗 , fixed, for each SNP j), GWAS models were 

extended in Ames-H to incorporate dominance for both fixed effects and random effects: 𝐠 =

𝐐𝛅 + 𝐱𝑗𝛽𝑗 + 𝐳𝑗𝜃𝑗 + 𝐮 + 𝐰 + 𝛆; 𝐮 ~ 𝑁(𝟎, 𝐆𝜎𝑢
2), 𝐰 ~ 𝑁(𝟎, 𝐃𝜎𝑤

2 ), 𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀
2), 𝐆 = 𝐗𝐗′ 𝑚⁄ , 

𝐃 = 𝐙𝐙′ 𝑚⁄ . Significance of SNPs was assessed by Wald tests on estimates of 𝛽𝑗 and 𝜃𝑗. 

GWAS models were fitted under the EMMAX approximation of Kang et al. (2010), using 

function fastLm in the R package RcppEigen v0.3.3.5.0 (Bates and Eddelbuettel 2013).  

Functional enrichments 

Effects of functional features on the amplitude of marker effects were captured by linear mixed 

models which partitioned the genomic variance by annotation bins. For each feature (gene 

proximity, recombination rate, chromatin openness, MAF, and GERP) the following functional 

enrichment model was fitted: 

𝐠 = 𝐐𝛅 + 𝐮 + 𝐰 + 𝛆; 𝐮 ~ 𝑁(𝟎, ∑ 𝐆𝑘𝜎𝑘
2

𝑘 ), 𝐰 ~ 𝑁(𝟎, ∑ 𝐃𝑙𝜎𝑙
2

𝑙 ),  𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀
2), 𝐆𝑘 =

𝐗𝑘𝐗𝑘
′

𝑚𝑘
, and 

𝐃𝑙 =
𝐙𝑙𝐙𝑙

′

𝑚𝑙
  (3) 



where 𝐗𝑘 (𝐙𝑙) is the matrix of minor-allele counts (heterozygosity) at the mk (ml) SNPs in bin k 

(l), and 𝜎𝑘
2 (𝜎𝑙

2) is the variance component associated to additive effects in bin k (dominance 

effects in bin l). The significance of variance partitions was assessed by likelihood ratio tests, 

comparing the REML of the evaluated model to that of a baseline model. Model (3) was fitted by 

REML using the R package regress v1.3-15 (Clifford and McCullagh 2005) in Ames-H or 

NAM-H. In NAM-H, model (3) did not include dominance effects (w), because of collinearity of 

additive and dominance effects in this panel (due to only one inbred tester in NAM-H). Two 

types of variance partition were analyzed: partition by one feature (baseline: DGBLUP in Ames-

H and GBLUP in NAM-H), and partition by both gene proximity and another feature (baseline: 

partition by gene proximity only in DGBLUP or GBLUP).  

Variance partition and SNP enrichment 

The proportion of variance explained by marker effects in GBLUP was estimated by 

1

𝑛
∑

𝐺̃𝑖𝑖𝜎𝑢
2

𝐺̃𝑖𝑖𝜎𝑢
2+𝜎𝜀

2𝑖 , where 𝐺̃𝑖𝑖 is the ith diagonal element of matrix G adjusted for fixed effects, i.e., 𝐆 =

(𝐈 − 𝐇)𝐆(𝐈 − 𝐇), with 𝐇 = 𝐐(𝐐′𝐐)−𝟏𝐐′ being the matrix of projection onto the column space 

of Q. The proportion of variance explained by additive marker effects in DGBLUP was 

estimated by 
1

𝑛
∑

𝐺̃𝑖𝑖𝜎𝑢
2

𝐺̃𝑖𝑖𝜎𝑢
2+𝐷̃𝑖𝑖𝜎𝑤

2 +𝜎𝜀
2𝑖 , and similarly for dominance effects, 

1

𝑛
∑

𝐷̃𝑖𝑖𝜎𝑤
2

𝐺̃𝑖𝑖𝜎𝑢
2+𝐷̃𝑖𝑖𝜎𝑤

2 +𝜎𝜀
2 𝑖  [model 

(1)], with 𝐃̃ = (𝐈 − 𝐇)𝐃(𝐈 − 𝐇). In functional enrichment models, SNP enrichment for additive 

effects at bin k* was calculated by the ratio of [
1

𝑛
∑ 𝐺𝑘∗̃

𝑖𝑖
𝜎𝑘∗

2
𝑖 ] [

1

𝑛
∑ (∑ 𝐺𝑘̃ 𝑖𝑖

𝜎𝑘
2

𝑘 + ∑ 𝐷𝑙̃ 𝑖𝑖
𝜎𝑙

2
𝑙 )𝑖 ]⁄ , 

i.e., the proportion of genomic variance explained by bin k*, over 𝑚𝑘∗ [∑ 𝑚𝑘𝑘 + ∑ 𝑚𝑙𝑙 ]⁄ , i.e., the 

proportion of SNP effects in bin k* (and similarly for dominance effects at bin l*) [model (3)].  

Validation of genomic prediction models 

Prediction accuracy of genomic models (GBLUP, DGBLUP, GWAS models, and functional 

enrichment models) was characterized by the Pearson correlation between observed genotype 

means and their predicted values in validation sets. For models trained in Ames-H, a validation 

set was 1 of the 24 NAM-H populations. This validation scheme assessed prediction models for 

genomic selection in bi-parental breeding populations, and was compared to a “leave-one-

population-out” cross-validation scheme where, for each validation set (population), models 

were trained on the remaining 23 populations in NAM-H. For models trained in NAM-H, a 



validation set was 1 of 10 random subsets in Ames-H. These subsets were created by a random 

partition stratified by tester and population cluster (Figure S1), so that all validation sets equally 

represented variation over population clusters and testers. This validation scheme assessed 

prediction models for evaluation in diverse panels. The significance of prediction accuracy for 

any genomic model was tested for non-zero mean (by a one-sample t-test) and significant 

difference to another model (by a two-sample t-test paired by validation set). 

Assessment of genotype-by-panel interactions 

Interactions between genotypes and panels were assessed by Pearson correlation in genotype 

means between panels, for hybrids common to both panels (𝜌𝑅). These hybrids were derived 

from crosses between PHZ51 and 1 of 23 reference lines (B73, B97, CML52, CML69, CML103, 

CML228, CML247, CML277, CML322, CML333, Il14H, Ki3, Ki11, M162W, M37W, Mo17, 

Mo18W, NC350, NC358, Oh43, P39, Tx303, and Tzi8). 

Genotype-by-panel interactions were also assessed by the following polygenic model, based on 

Jarquín et al. (2014): 

𝐠 = 𝐐̃𝛅̃ + 𝐮̃ + 𝛆; 𝐮̃ ~ 𝑁(𝟎, 𝐆𝜎0
2 +  [𝐆 ○ 𝐄𝐄′]𝜎1

2), 𝛆 ~ 𝑁(𝟎, 𝐈𝜎𝜀
2), 𝐆 = 𝐗𝐗′ 𝑚⁄  

where E was the n×2 design matrix attributing genotypes to panels, either Ames-H or NAM-H;  

𝐐̃ = [𝐄 𝐏] and 𝛅̃ captured effects of panels and population structure; 𝐮̃ were polygenic genomic 

effects with main variance and panel-specific variance being quantified by 𝜎0
2 and 𝜎1

2, 

respectively; ○ refers to the Hadamard (element-wise) product. For a given hybrid i, correlation 

in 𝑢̃𝑖 between different panel j and j’ was defined by 𝜌𝐺 = Cor(𝑢̃𝑖𝑗 , 𝑢̃𝑖𝑗′) =
𝐺𝑖𝑖𝜎0

2

𝐺𝑖𝑖(𝜎0
2+𝜎1

2)
=

𝜎0
2

𝜎0
2+𝜎1

2 

(Jarquín et al. 2014). This model was fitted in Ames-H and NAM-H jointly, by REML using the 

R package regress v1.3-15 (Clifford and McCullagh 2005). 

Data availability statement 

Supporting data can be downloaded from https://doi.org/10.25739/x2wc-yj71: raw marker scores 

at GBS SNPs (Ames and NAM inbred panels), imputed markers scores at WGS SNPs 

(Hapmap3.2.1, Ames-H and NAM-H), raw phenotypic measurements (Ames-H and NAM-H), 

estimated genotype means (Ames-H and NAM-H), and functional annotations. Raw marker 

scores at WGS SNPs in Hapmap3.2.1 are publicly available (https://doi.org/10.7946/p28h0c; 

https://doi.org/10.25739/x2wc-yj71
https://doi.org/10.7946/p28h0c


Bukowski et al. 2018). Supporting code (in R and Bash) is available at 

https://bitbucket.org/bucklerlab/ames_nam_hybrid. Supporting information is available at 

figshare. Table S1 describes interactions between genotypes and environments. Table S2 

describes high-confidence QTL effects in Ames-H and NAM-H, based on GWAS models and 

BSLMMs. Table S3 shows summary statistics about genomic inbreeding in Ames-H. Table S4 

describes the difference in accuracy from Ames×PHZ51 to Ames×B47 for prediction in NAM-

H. Table S5 describes prediction accuracy in NAM-H by directional effects of inbreeding in 

Ames-H. Table S6 describes prediction accuracy from GWAS models. Table S7 presents the 

significance of variance partition by panel and functional feature. Table S8 describes genomic 

heritability captured by functional classes in functional enrichment models. Table S9 describes 

genomic prediction accuracy of functional enrichment models. Figure S1 shows the population 

clusters in Ames-H, inferred by k-means clustering (k = 4). Figure S2 depicts linkage 

disequilibrium in Ames-H and NAM-H. Figure S3 shows allele frequency among female parents 

in Ames-H and NAM-H. Figure S4 shows the significance of marginal additive effects in GWAS 

in Ames-H and NAM-H. Figure S5 shows the SNP enrichment by bin, for structural and 

evolutionary features in Ames-H and NAM-H. Figure S6 shows the SNP enrichment by bin, for 

structural and evolutionary features in Ames-H and NAM-H, while accounting for enrichment by 

gene proximity. 

RESULTS 

Hybrid panels differ by genetic diversity and genetic basis for grain yield 

Hybrid panels display contrasting levels of diversity 

While the Ames hybrid panel (Ames-H) has a few hybrids with an affinity to semi-tropical lines 

like CML 247, it is, for the most part, comprised of hybrids closely related to SS lines like B73 

and NSS lines like Mo17 (Figure 2). Compared to Ames-H, NAM-H is less diverse, since it was 

produced by crosses between a single NSS tester (PHZ51) and bi-parental populations which 

were all derived from a cross involving B73 as a common parent (NAM RILs are 50% B73). 

Moreover, female parents in NAM-H were selected for similar flowering time to PHZ51, hence 

further narrowing down the genetic diversity in this panel. 

https://bitbucket.org/bucklerlab/ames_nam_hybrid


 Genome-wide patterns of linkage disequilibrium and allele frequency are similar across 

panels 

Linkage disequilibrium (LD) patterns are quite similar in both hybrid panels. After adjustment 

for population structure and relatedness (following Mangin et al. 2012), LD values are 

moderately concordant between Ames-H and NAM-H (r = 0.77) (Figure S2). Average LD 

values along chromosomes decay at similar rates, reaching 0.1 at 160 kb in Ames-H and 151 kb 

in NAM-H. Allele frequencies among female parents are also concordant between Ames-H and 

NAM-H (r = 0.88), but there are SNPs at low frequency in NAM-H (< 0.5) which segregate at 

frequencies between 0 and 1 in Ames-H (Figure S3). 

Genetic architecture for grain yield differs across panels  

Three agronomic traits were analyzed in Ames-H and NAM-H: days to silking (DTS), plant 

height (PH), and grain yield adjusted for differences in flowering time among hybrids (GY). The 

relatively low accuracy of genotype means for GY (as reflected by low broad-sense heritability 

and entry-mean reliability; Table 1) suggests variability due to genotype-by-environment 

interactions. Accordingly, genotypic effects for GY appear highly inconsistent across panels 

(Table S1). For GY, correlations across panels based on genotype means of reference lines (𝜌𝑅) 

and genomic marker effects (𝜌𝐺) are not significantly different from zero (p-value > 0.10; Table 

S1). In contrast, consistency in genetic bases is higher for PH (𝜌𝑅 = 0.65, 𝜌𝐺 = 0.78; p-value < 

0.001) and DTS (𝜌𝑅 = 0.93, 𝜌𝐺 = 1.0; p-value < 0.001) (Table S1). Therefore, DTS, PH, and 

GY represent three distinct levels of sensitivity to genotype-by-environment interactions, being 

respectively weak, moderate, and strong. 



Figure 2 – The two hybrid panels differ by their number of testers and their level of 

diversity. Principal component (PC) plot of hybrids. Ames-H consists of crosses between the 

Ames inbred panel and B47 (Ames×B47) or PHZ51 (Ames×PHZ51). NAM-H consists of crosses 

between the NAM inbred panel and PHZ51. Crossed circles refer to the male tester inbred line; 

light blue dots refer to female inbred lines; dark blue open circles refer to the hybrid lines 

making up Ames-H and NAM-H. Diamonds refer to reference lines: B73, SS reference line; 

Mo17, NSS reference line; CML247, CIMMYT semi-tropical reference line. Principal 

components and proportions of genomic variance explained were computed based on WGS SNPs 

in the Goodman panel. 

  



Table 1 – Phenotypic information by panel and trait 

Panel Trait Environments Mean 𝝈𝒈  H2 𝒓𝒈
𝟐   

Ames  DTS 11IA 11IN 11NC 11NE 11NY 

11MO  

12NC 12NE 12MO 

66.4 2.1 0.78 0.95 

PH 11IA 11IN 11NC 11NE 11NY 

11MO  

12NC 12NE 12MO 

219 13 0.69 0.92 

GY 11IA 11NC 11NE 11MO 

12NC 12NE 12MO 

6.13† 0.66 0.29 0.62 

NAM  DTS 10IA 10IN 10MO 

11IA 11IN 11NC 11NY 

70.6 1.5 0.55 0.81 

PH 10IA 10IN 10NC 10MO 

11IA 11IN 11NC 11NY 

247 10 0.30 0.69 

GY 10IA 10IN 10MO 

11IA 11NC 

6.94† 0.44 0.16 0.35 

Trait: days to silking (DTS), plant height (PH), grain yield adjusted for DTS (GY). Environments 

refer to year (2010, 2011, 2012) and locations [Kingston (NC), Ames (IA), West Lafayette (IN), 

Lincon (NE), Columbia (MO), and Aurora (NY)]. Mean: average phenotypic value; †: means 

shown for GY are adjusted by mean DTS. 𝜎𝑔: genotypic standard deviation. H2: broad-sense 

heritability on a plot basis. 𝑟𝑔
2: average entry-mean reliability. 

Evidence for dominance effects in hybrids is consistent for plant height and 

grain yield 

Analyses of dominance were conducted in Ames-H only. Under the hypothesis that dominance 

effects are pervasive in Ames-H, we expected consistent evidence for different types of 

dominance effects: polygenic effects from variance partition [Material and methods: model (1)]; 

fixed QTL effects from association mapping; directional effects from analysis of genomic 

inbreeding [Material and methods: model (2)]. Furthermore, we expected gains in genomic 

prediction accuracy to be achieved by any type of dominance effects in an extraneous panel 

(NAM-H) (Figure 1). Dominance effects of markers were not estimated in NAM-H because 

hybrids in this panel are characterized by only two genotype classes at any given marker (instead 

of three in Ames-H) such that additive and dominance effects are statistically equivalent in 

NAM-H. 



Polygenic dominance effects capture genotypic variability for all traits 

To assess the general relevance of polygenic dominance effects, genotypic variability was 

partitioned into additive and dominance components in a dominance GBLUP (DGBLUP) model. 

For all traits, dominance accounts for a significant portion of genotypic variability in Ames-H (p-

value ≤ 2.2×10-11), capturing 35%, 23%, and 41% of genomic variance for DTS, PH, and GY 

(Figure 3a). These estimates correspond to average degrees of dominance (ratio of dominance-

to-additive standard deviations) of 0.73, 0.54, and 0.83 respectively. Therefore, overdominance 

does not seem to be pervasive in Ames-H (average degrees of dominance lower than one). 

Effects of QTL are significant for days to silking but do not suggest dominance gene action 

GWAS models reveal multiple significant QTL effects for DTS (Figure S4). There are five and 

seven high-confidence QTL (FDR ≤ 0.05 and WPIP ≥ 0.5; see Material and methods) for DTS in 

Ames-H and NAM-H, respectively (Figure S4; Table S2). For PH and GY, no QTL effects are 

significant except for one QTL in NAM-H for GY (Table S2). GWAS signals for DTS show 

limited consistency between Ames-H and NAM-H, with no overlap of high-confidence QTL 

across panels (Figure S4; Table S2). 

To test whether dominance contributes to QTL effects, we conducted a GWAS for 

additive and dominance QTL effects in Ames-H. Multiple additive effects appear significant for 

DTS, with significant QTL effects (FDR ≤ 0.05) in chromosomes 3, 1, and 9 (Figure 3c). But, 

dominance effects are not significant (FDR > 0.30) (Figure 3c), so the inconsistency in QTL 

effects for DTS across panels probably does not involve dominance. Moreover, genetic effects 

for DTS do not appear to be sensitive to environments (Table S1), and there are no systematic 

differences in allele frequency that consistently explain differences in significance of QTL 

effects across panels (Table S2). Thus, it is plausible that higher-order genetic interactions 

(epistasis) cause the difference in QTL significance for DTS across panels. 

Effects of inbreeding point to higher-order genetic interactions for days to silking 

Under directional dominance, inbreeding should be linearly related to fitness, but such 

relationship will tend to be nonlinear under higher-order epistatic interactions such as 

dominance×dominance interactions (Crow and Kimura 1970). To test whether dominance 

contributes to genotypic variability by directional effects, we assessed linear and quadratic 

effects of genomic inbreeding (F) on agronomic traits. For PH and GY in Ames-H, only linear 

effects of genomic inbreeding are significant (Figure 3b; Table S3). Moreover, these effects are 



on par with their expected impact on fitness, since genomic inbreeding is negatively associated 

with PH and GY. For DTS in Ames-H, only the quadratic effect of genomic inbreeding is 

significant (Figure 3b). Along with the lack of dominance QTL effects, this lack of linear effects 

suggests that non-additive genetic effects for DTS may not be properly captured by dominance 

effects, contrary to PH and GY where evidence from polygenic and directional effects is 

consistent. 

Polygenic dominance effects increase prediction accuracy for plant height 

Prediction accuracy within NAM-H (in leave-one-population-out cross-validation) is consistently 

higher than prediction accuracy from Ames-H to NAM-H, especially for GY (Table 2). Indeed, 

the observed decreases in prediction accuracy (between GBLUP trained in Ames-H and GBLUP 

trained in NAM-H) are larger when genomic correlations across panels are lower (Table S1). For 

DTS and PH, GBLUP models based on Ames-H (1106 hybrid crosses with PHZ51 or B47) are 

significantly more accurate than those based on Ames×B47 (subset of 643 hybrid crosses with 

B47 only), highlighting the benefit of having similar testers (PHZ51) between training and 

validation panels. Furthermore, GBLUP models based on Ames-H are as or more accurate than 

those based on Ames×PHZ51 (subset of 463 hybrid crosses with PHZ51 only), which 

demonstrates the robustness of GBLUP models to multiple testers within training sets. For GY, 

GBLUP models based on Ames×B47 are more accurate than those based on Ames-H or 

Ames×PHZ51 (Table 2). The close genetic relationship between B47 and the common parent in 

NAM-H, B73, may benefit prediction accuracy from Ames×B47 to NAM-H, despite the 

difference in tester (Figure 2). Moreover, the gain in prediction accuracy from Ames×PHZ51 to 

Ames×B47 is only significant in NAM-H populations which originate from tropical lines, at 

equal sample sizes (+0.124; p-value = 0.010; Table S4); therefore, female parents in Ames×B47 

may also contribute to better predictions for GY, especially in NAM-H populations of tropical 

origin. 

Incorporating dominance effects in GBLUP models results in significant gains in 

prediction accuracy for PH only (+0.023; p-value = 0.021), and no significant differences for 

DTS and GY (Table 2). Therefore, accounting for polygenic dominance effects should not be 

detrimental to genomic prediction models and may even increase their accuracy. In contrast, 

fixed effects do not contribute to increased prediction accuracy: directional effects from genomic 

inbreeding result in small and non-significant differences in prediction accuracy (Table S5); 



additive and dominance effects at high-confidence QTL in GWAS models result in large and 

moderately significant decreases in prediction accuracy for DTS (-0.059; p-value < 0.10; Table 

S6). 

 

Figure 3 – Dominance genetic effects are prevalent for plant height (PH) and grain yield 

(GY), but not for days to silking (DTS), in Ames-H. (a) Partition of variance by additive and 

dominance effects in genome-wide polygenic models; genomic heritability: proportion of 

variance among genotype means captured by additive (Add.) or dominance (Dom.) marker 

effects; p: p-values from likelihood ratio tests. (b) Estimated effects of genomic inbreeding (point 

and 95% confidence interval). Effects are shown in unit of standard deviations for each trait. F: 

linear effect; F2: quadratic effect. (c) Quantile-quantile plot for joint estimates of additive effects 

(‘Add.’) and dominance effects (‘Dom.’). Effects of SNPs were deemed significant if their false 

discovery rate (FDR) was lower than 0.05 and if they were not within 1 Mb of SNPs with more 



significant effects (effects with lower p-values). SNPs with significant effects are designated by 

chromosome number and genomic position in Mb. 

Table 2 – Genomic prediction accuracy in NAM-H 

 
Cross-

validation 

prediction 

accuracy 

(p-value) 

Prediction 

accuracy 

(p-value) 

Difference in prediction accuracy (p-value) 

Training 

panel 

(testers) 

NAM-H 

(PHZ51) 

Ames-H 

(PHZ51, B47) 

 

Ames-H 

(PHZ51, B47) 

Ames×PHZ51 

(PHZ51 only) 

Ames×B47 

(B47 only) 

Model GBLUP GBLUP Dominance 

GBLUP 

GBLUP GBLUP 

DTS 0.405 

(2.2×10-11) 

0.331 

(2.3×10-11) 

-0.013 

(0.21) 

-0.028 

(0.078) 

-0.068 

(2.7×10-3) 

PH 0.394 

(1.4×10-10) 

0.235 

(9.6×10-8) 

+0.023 

(0.021) 

+0.014 

(0.42) 

-0.095 

(8.5×10-5) 

GY 0.240 

(2.2×10-9) 

-0.001 

(0.96) 

-0.010 

(0.33) 

-0.018 

(0.29) 

+0.056 

(0.014) 

Prediction accuracy: average correlation between observed and predicted phenotypes in NAM-

H over 24 populations; Cross-validation prediction accuracy: leave-one-population-out 

prediction accuracy within NAM-H; Difference in cross-panel prediction accuracy: difference 

between models (dominance GBLUP vs. GBLUP model in Ames-H) or between training sets 

(Ames×PHZ51 or Ames×B47 vs. Ames-H). Significance of average prediction accuracies (non-

zero mean) and estimated differences in prediction accuracy (non-zero difference, paired by 

NAM-H population) was assessed by t-tests. 

Heterogeneity in polygenic effects is best captured by gene proximity  

Analyses of functional features (gene proximity, recombination rate, chromatin openness, MAF 

and GERP scores) were conducted in Ames-H and NAM-H. Under the hypothesis that there are 

differential effects across functional classes, we expected SNP enrichment (enrichment in 

genomic heritability by class of SNPs) in functional enrichment models (partition of additive and 

dominance variance in Ames-H and partition of additive variance in NAM-H) [Material and 

methods: model (3)]. Moreover, we expected gains in prediction accuracy achieved by functional 

enrichment models across panels (Figure 1). 



Polygenic effects are enriched in genic regions for all traits 

Partition of genomic variance by proximity to annotated genes is significant for all traits in 

Ames-H and NAM-H, based on likelihood ratio tests combined by Fisher’s method (p-value < 

0.01; Table S7; Figure 4a). As suggested by the high correlation in significance (-log10(p-value)) 

between Ames-H and NAM-H (r = 0.92), the higher significance of partitions in NAM-H could 

be due to a systematic increase in statistical power, due in part to the larger sample size in NAM-

H (n = 1640 vs. n = 1106). 

Polygenic SNP effects are consistently enriched near genic regions (Figure 4b), and the 

proportion of variance explained by gene-proximal SNPs is consistently larger than explained by 

gene-distal SNPs (56% to 100% of the genomic variability is explained by gene-proximal SNPs, 

across traits and panels; Table S8). Therefore, genetic effects seem enriched in genic regions, 

especially for PH where enrichment is highly significant in both panels. 

Enrichment of polygenic effects by structural and evolutionary features is unclear 

Partition of genomic variance explained by recombination rate, chromatin openness, MAF, and 

GERP scores is significant for DTS in NAM-H only, for PH in both panels (except MAF), and 

for GY in NAM-H only (except MAF) (Figure 4a; Table S7). SNP enrichments in both panels 

indicate that the magnitude of polygenic effects tend to be larger at low-diversity loci (low MAF 

and high GERP scores) and in euchromatic regions (open chromatin and moderate-to-high 

recombination rates) (Figure S5). However, none are significant across traits after accounting for 

gene proximity, based on likelihood ratio tests combined by Fisher’s method (p-value > 0.01; 

Table S7). Because evolutionary constraint and chromatin structure are positively associated 

with gene density, enrichment at these features may be due to functional enrichment by gene 

proximity (Figure S6). One notable exception was MAF for GY (p-value = 9.8×10-3; Table S7), 

which indicates some promise for SNP enrichment by MAF classes. However, enrichments by 

MAF classes are inconsistent across panels, with rare SNPs (MAF ≤ 0.01) being functionally 

enriched only in NAM-H, for example (Figure S6). 

Variance partition by gene proximity or GERP scores increases prediction accuracy for all 

traits 

Partitioning genomic variance by gene proximity is often useful to genomic prediction. From 

Ames-H to NAM-H (training in Ames-H, validation in NAM-H), partition of genomic variance 

by gene proximity increases prediction accuracy for DTS (+0.013, p-value = 3.3×10-4), PH 



(+0.029, p-value = 0.023), and GY (+0.010, p-value = 0.085), compared to a dominance GBLUP 

model (Figure 5). From NAM-H to Ames-H, partition by gene proximity increases prediction 

accuracy for PH only (+0.078, p-value = 1.1×10-4), compared to a GBLUP model (Figure 5). 

Other features than gene proximity result in further gains in prediction accuracy (Table S9). In 

particular, partitioning genomic variance by GERP scores is useful for genomic prediction, even 

when accounting for enrichment by gene proximity, with significant gains in prediction accuracy 

achieved from NAM-H to Ames-H for DTS (+0.019, p-value = 1.6×10-4) and GY (+0.040, p-

value = 5.4×10-6) (Figure 5). There are also some improvements by taking into account 

recombination rate (+0.014 for GY from Ames-H to NAM-H, +0.013 for DTS and +0.020 for 

GY from NAM-H to Ames-H), but they are less substantial than those achieved by using GERP 

scores (Table S9). Even when classes based on MNase HS and GERP scores do not yield 

significant gains in prediction accuracy, the high SNP enrichments achieved by taking into 

account these features (~32-fold for open-chromatin regions and ~8-fold for GERP > 0) can be 

of practical interest for SNP prioritization in genomic prediction (Figure S5; Table S8). 

Improvements of prediction accuracy by enrichment of SNP effects in functional classes 

contrast with the lack of improvement from enrichment of SNP effects by GWAS. Incorporating 

high-confidence QTL effects from GWAS as fixed effects in either a dominance GBLUP model 

(from Ames-H to NAM-H) or a GBLUP model (from NAM-H to Ames-H) does not improve 

prediction accuracy, regardless of traits or validation schemes (Table S6; Figure 5). These results 

suggest that prioritizing few statistically significant loci (based on GWAS) may not be as useful 

as prioritizing broader classes of loci, probably because of background-dependency of strong 

QTL effects (marker-by-population and marker-by-environment interactions). 



 

Figure 4 – Effects of SNPs are enriched in gene-proximal regions for days to silking (DTS), 

plant height (PH) and grain yield (GY), in Ames-H and NAM-H. (a) Significance of variance 

partition by gene proximity (Gene), structural features (Rec., MNase HS) or evolutionary 

features (MAF, GERP), and variance partition after accounting for gene proximity (Gene+Rec., 

Gene+MNase HS, Gene+MAF, Gene+GERP); p-values were obtained by likelihood ratio test 

comparing the functional enrichment model to a baseline model with no partition for the feature 

of interest (e.g. Gene vs. unpartitioned model, Gene+MAF vs. Gene); dashed lines correspond to 

thresholds for significance in either panel, after adjustment by Bonferroni correction. Labels 

refer to significant features after Bonferroni correction, based on p-values in either panel (open 

boxes) or p-values in both panels combined by Fisher’s method (full boxes) (Table S7). (b) SNP 

enrichment (inflation of SNP effects by functional class, i.e., the ratio of the proportion of 

genomic variance explained over the proportion of SNPs), for additive effects (Add.) and 

dominance effects (Dom.), by bin for gene proximity (Gene). Proximal: ≤ 1 kb of an annotated 

gene; Distal: > 1 kb from an annotated gene. 



 

Figure 5 – Functional enrichment by gene proximity and GERP scores improve accuracy 

of genomic prediction models for days to silking (DTS), plant height (PH) and grain yield 

(GY). Prediction accuracy (y-axis): average correlation between observed and predicted 

phenotypes in validation sets. Validation scheme: training panel ⇒ validation panel. 

Unpartitioned: DGBLUP (polygenic additive and dominance effects) in Ames-H, GBLUP 

(polygenic additive effects only) in NAM-H; GWAS, fixed effects at high-confidence QTL from 

GWAS; Gene, functional enrichment by proximity to genes (≤ 1 kb of an annotated gene); 

Gene+GERP, functional enrichments by proximity to genes and GERP scores. Black diamonds 

indicate average prediction accuracy. Significance of estimated differences in prediction 

accuracy (non-zero difference) was assessed by t-tests, paired by validation set. Only p-values 

lower than 0.10 are shown. 
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DISCUSSION 

Do additive and dominance effects adequately capture genetic architectures? 

For all traits, a significant proportion of variance is explained by dominance effects (Figure 3a). 

However, for DTS, there is conflicting evidence about the importance of dominance: (i) no 

significant dominance QTL effects despite significant additive QTL effects (Figure 3c) and (ii) 

significant quadratic effects of genomic inbreeding, without any linear effect (Figure 3b). Such 

evidence indicates that DTS should probably be analyzed under more complex genetic models 

involving epistatic interactions, possibly reflecting the complex molecular pathways underlying 

flowering time (e.g., photoperiod genes; Yang et al. 2013, Blümel et al. 2015, Minow et al. 

2018). In this study, genomic variance in Ames-H could not be partitioned reliably by additive, 

dominance, and epistatic effects, because genomic relationships for pairwise epistatic effects are 

highly correlated with those for additive effects (r > 0.99 between additive and additive×additive 

relationships). Moreover, epistatic effects in linear mixed models vary depending on how marker 

variables are centered, in a way that can be arbitrary (Martini et al. 2016, Martini et al. 2017). 

However, further analyses to investigate the contribution of epistatic effects to genomic variance 

is merited (Jiang and Reif 2015). Investigating epistatic effects would likely require large panels 

with more testers, and also efficient methodologies to restrict the number of interactions (e.g., 

only interactions between homeologs; Santantonio et al. 2019) and the types of effects involved 

(e.g., only SNP×SNP interactions like additive×additive effects, or SNP×background interactions 

like SNP×PC effects; Ramstein et al. 2018). 

For PH and GY, there is consistent evidence for prevalent dominance effects: (i) 

significant variance partition by dominance effects (Figure 3a) and (ii) significant linear effects 

of genomic inbreeding, without any quadratic effect (Figure 3b). Therefore, additive and 

dominance effects may efficiently capture genetic effects for PH and GY. These results contrast 

with previous studies on hybrid maize, which showed additive effects could capture most of 

genotypic variability. Critically, those studies were based on panels derived solely from crosses 

between different heterotic groups (due to the practical relevance of such crosses), e.g., 

Flint×Dent (Technow et al. 2014, Giraud et al. 2017) or SS×NSS (Kadam et al. 2016). Therefore, 

complementation effects were relatively consistent across hybrids and well captured by general 
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combining abilities, such that variability for specific combining ability was low. In contrast, one 

of our panels (Ames-H) shows strong variation for complementation effects because it represents 

a variety of genetic contexts (SS×NSS, SS×SS, Semi-tropical×SS, etc.). Therefore, it is better-

suited to represent the differential levels of complementation effects in maize and reveal the 

importance of dominance effects across maize hybrids. 

No QTL effect were detected in Ames-H for PH or GY, whereas previously published 

analyses have reported significant additive and dominance QTL effects for these traits (Schön et 

al. 2010, Larièpe et al. 2012). Those studies were based on populations from Design III 

experiments, where bi-parental progeny (typically RILs) are crossed with either parent. In 

comparison, panels like Ames-H or even NAM-H are genetically more diverse and are 

characterized by many low-frequency variants (Figure S3). So, heterogeneity in genetic 

backgrounds and low variability at markers likely contribute to lower QTL detection power in 

Ames-H and NAM-H. Moreover, it is possible that the larger QTL effects detected in Design III 

studies arose from multiple loci in strong linkage, due to relatively few (effective) recombination 

events in their populations. Consistently, degrees of dominance estimated in those studies were 

especially large around centromeres, possibly because of repulsion phase linkage (Hill and 

Robertson 1966). In contrast, genome-wide degrees of dominance estimated in Ames-H are 

relatively low (< 1) and no significant enrichment for dominance effects is detected in low-

recombination regions, after accounting for gene proximity (Table S7). Therefore, differences in 

QTL detection power between Ames-H and Design III populations may be caused by important 

differences in both genetic diversity and LD structure. 

What is the biological basis for enrichment of SNP effects by gene proximity? 

Analyses of functional enrichment point to genetic effects arising mostly from genic regions 

(proximal SNPs, ≤ 1 kb from annotated genes). The relevance of genic regions for capturing 

genotypic variability in hybrid maize is consistent with hypotheses about biological causes of 

heterosis (hybrid vigor) related to gene expression, namely, (i) non-additive inheritance of gene 

expression and (ii) nonlinear effects of gene expression on agronomic traits (Springer and Stupar 

2007, Schnable and Springer 2013). Proposed mechanisms for non-additive inheritance of gene 

expression include complementation with respect to regulatory motifs or transcription factors, 

and presence/absence variation (Paschold et al. 2012, Marcon et al. 2017, Zhou et al. 2019), but 
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studies in maize generally report that most genes have an additive mode of inheritance for 

expression levels (e.g., Swanson-Wagner et al. 2006, Stupar and Springer 2006, Zhou et al. 

2019). Conversely, the gene balance hypothesis indicates that highly connected genes (in 

pathways, protein complexes, etc.) should be expressed in relative amounts under a 

stoichiometric optimum (Birchler and Veitia 2010). This optimum points to a balance between 

benefits of gene expression (from RNA or protein activity) and its costs (from energy 

requirements and accumulation of wasteful products or toxic intermediates), which may result in 

nonlinear effects of gene expression (Dekel and Alon 2005, Domingo et al. 2019). Results in 

support of the gene balance hypothesis in maize include intermediate gene expression harboring 

minimal burden of deleterious mutations in diverse maize inbred lines (Kremling et al. 2018). 

Furthermore, models related to metabolic fluxes provide examples of mechanisms by which gene 

balance can arise (Fiévet et al. 2010, Vacher and Small 2019). These models describe the 

nonlinear relationships between enzyme concentrations and metabolic fluxes (e.g., hyperbolic 

functions), so that additive genetic effects on gene expression may translate into non-additive 

effects on agronomic traits. Importantly, benefits and costs of gene expression are affected by 

intragenic interactions (e.g., protein folding; Otwinowski et al. 2018), which can be captured by 

dominance effects and LD within genes, but also intergenic interactions (e.g., pathway 

interactions, or protein-protein interactions; Vacher and Small 2019, Diss and Lehner 2018), 

which cannot be captured predictably by dominance effects. Ideally, future research about non-

additive genetic effects and their enrichment in genic regions will involve transcriptomic, 

proteomic and/or metabolomic data, to empirically test the gene balance hypothesis and provide 

mechanistic explanations for genotypic variability in hybrid maize.   

Are dominance effects and enrichments in genic regions useful for genomic 

prediction? 

In this study, the relevance of dominance effects and functional enrichments was evaluated by 

genomic prediction across panels. Therefore, prediction models were assessed for their ability to 

sustain accuracy across distinct population backgrounds. Genomic prediction accuracy was 

estimated in NAM-H to reflect genomic selection applications in bi-parental breeding 

populations crossed to a single tester. These populations serve as useful validation sets because 

they exemplify inter-heterotic populations, as crosses between PHZ51 (an NSS line) and NAM 
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inbred lines (related to the SS pool by at least 50% through the common B73 parent). These 

populations are therefore good examples of breeding populations crossed to a relevant tester. In 

contrast, genomic prediction accuracy was estimated in Ames-H to reflect a different situation 

where diverse panels are evaluated for hybrid performance, in genomic prospection (e.g., for pre-

breeding applications; Voss-Fels et al. 2019). Under this validation scheme, validations sets do 

not correspond to breeding populations, but instead consist of diverse hybrid panels structured by 

subpopulations and testers (Figure S1).  

Enrichment of SNP effects emphasize causal loci; therefore, enrichment procedures such 

as QTL detection or variance partition can improve the accuracy of genomic prediction models. 

However, as genetic effects vary between populations, enrichments about small functional 

classes (e.g., a few GWAS hits) lose their potential. This caveat is exemplified by differences in 

QTL effects for DTS between Ames-H and NAM-H, and the consequent lack of gain in accuracy 

by prediction models based on QTL effects (Figure 5; Table S6). Similarly, Spindel et al. (2016) 

showed benefits of major QTL effects for prediction of flowering time in rice, but only when 

QTL were detected in the target breeding populations. Contrary to enrichments for QTL, 

enrichments for larger functional classes (e.g., gene-proximal SNPs) should result in gains of 

prediction accuracy that are robust to differences in population backgrounds, as is observed here 

(Figure 5; Table S9). Likewise, Gao et al. (2017) reported gains in genomic prediction accuracy 

by prioritizing genic SNPs, in mouse, drosophila, and rice (increases in predictive ability 

averaging +0.013, similar to those realized in this study). Therefore, gains in prediction accuracy 

by gene proximity should be expected in a broad range of population and species contexts. 

While functional enrichments by gene proximity appear beneficial for all traits, 

incorporating polygenic dominance effects results in gains in prediction accuracy for PH only 

(Table 2). The lack of gain in prediction accuracy for DTS and GY illustrates possible reasons 

for disagreement between quality of fit and prediction accuracy often observed in genomic 

prediction studies. For DTS, incorporating dominance effects results in statistically significant 

improvements in fit, but a genetic model accounting for epistatic interactions appears more 

plausible according to analyses of QTL and genomic inbreeding. Thus, the choice of prediction 

procedure should probably come from multiple pieces of evidence in favor of a given genetic 

model, rather than a single statistical test about the genomic prediction model. In the case of GY, 
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prediction accuracy across panels is probably hindered by genotype-by-environment interactions, 

which could be accommodated by models incorporating environmental covariates (e.g., Li et al. 

2018, Millet et al. 2019). 

Conclusions 

Our analyses point to genetic models in hybrid maize which involve interactive effects 

and emphasize genic regions. While dominance may be relevant to all three traits, other 

nonlinear effects seemed important for DTS, and interactions with environments appeared 

critical for GY. Consequently, genomic prediction models were improved by dominance effects 

for PH only. In contrast, genomic prediction models benefited from functional enrichment in 

genic regions for all traits. Although gene proximity appeared most useful and meaningful in our 

study, the value of structural and evolutionary features for genomic prediction deserves more 

attention. Our results call for further investigation about the biological basis of genetic 

complementation, and the underlying interactive effects which could enable more robust 

prediction of genotypic variability in hybrid maize. 
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