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16 Abstract

17 Genomic prediction typically relies on associations between single-site polymorphisms and traits 

18 of interest. This representation of genomic variability has been successful for prediction within 

19 populations. However, it usually cannot capture the complex effects due to combination of 

20 alleles in haplotypes. Therefore, accuracy across populations has usually been low. Here we 

21 present a novel and cost-effective method for imputing cis haplotype associated RNA expression 

22 (HARE, RNA expression of genes by haplotype), studied their transferability across tissues, and 

23 evaluated genomic prediction models within and across populations. HARE focuses on tightly 

24 linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans 

25 effects from diffusion and metabolism, so it would be more transferrable across different tissues 

26 and populations. We showed that HARE estimates captured one-third of the variation in gene 

27 expression and were more transferable across diverse tissues than the measured transcript 

28 expression. HARE estimates were used in genomic prediction models evaluated within and 

29 across two diverse maize panels – a diverse association panel (Goodman Association panel) and 

30 a large half-sib panel (Nested Association Mapping panel) – for predicting 26 complex traits. 

31 HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved 

32 haplotype structure, suggesting that HARE carried functional information in addition to 

33 information about haplotype structure. The largest increase was observed when the model was 

34 trained in the Nested Association Mapping panel and tested in the Goodman Association panel. 

35 Additionally, HARE yielded higher within-population prediction accuracy as compared to 

36 measured expression values. The accuracy achieved by measured expression was variable across 

37 tissues whereas accuracy using HARE was more stable across tissues. Therefore, imputing RNA 

38 expression of genes by haplotype is stable, cost-effective, and transferable across populations.
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42 Author summary

43 The increasing availability of genomic data has been widely used in the prediction of many traits. 

44 However, genome wide prediction has been mostly carried out within populations and without 

45 explicit modeling of RNA or protein expression. In this study, we explored the prediction of field 

46 traits within and across populations using estimated RNA expression attributable to only the 

47 DNA sequence around a gene. We showed that the estimated RNA expression was more 

48 transferable than overall measured RNA expression. We improved prediction of field traits up to 

49 15% using estimated gene expression as compared to observed expression or gene sequence 

50 alone. Overall, these findings indicate that structural and functional information in the gene 

51 sequence are highly transferable.

52
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53 Introduction

54 Genomic prediction is a powerful tool to predict quantitative traits using genomic information. In 

55 genomic prediction models, genome-wide predictors are simultaneously incorporated in the 

56 model in an attempt to capture variation from all quantitative trait loci (QTL) associated with the 

57 quantitative trait [1]. Genome-wide predictors could be single nucleotide polymorphisms (SNPs), 

58 haplotypes, or any downstream intermediate responses such as transcriptomes or metabolomes 

59 [1–6]. Haplotype sometimes yield higher prediction accuracy when compared to SNPs as they 

60 can capture local epistatic effects, can be in tight linkage with the QTL, and can better capture 

61 ancestral (identity by descent) relationships [7–10]. Haplotype-based models may be more useful 

62 as beneficial haplotypes are conserved across generations due to tight linkage. Downstream 

63 responses like gene expression may be biologically “closer” to the phenotype as they reflect 

64 transcription processes in different tissues. However, transcription is greatly affected by tissue, 

65 time, and growing conditions; therefore, transcriptome information from different tissues has 

66 varying power to predict phenotypes [2,4]. 

67

68 Gene expression is a complex phenomenon involving interaction between DNA, cell 

69 components, and the environment. Although every tissue in a plant contains the same genomic 

70 sequence, gene expression varies widely across tissues producing numerous phenotypes. The 

71 variation in gene expression is due to the differences in the regulatory regions and regulatory 

72 genes. Discerning the role of different factors contributing to expression is a challenge; however, 

73 a common approach to analyzing expression is to partition it into cis and trans components. The 

74 cis components are polymorphisms linked to the gene, whereas the trans are everything else not 

75 directly linked to the gene of interest [11]. Trans components are impacted by polymorphisms 
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76 arising anywhere in the genome and affect gene expression by the products from diffusion and 

77 metabolism [12]. In maize like all eukaryotes, the expression of any gene is often impacted by 

78 dozens of transcription factors encoded in trans all across the genome [13]. Therefore, trans 

79 components frequently explain more variation in expression than cis components.

80

81 Different approaches exist to partition the variation in expression and infer the contribution to 

82 expression by cis factors only. These include hybrid crosses between inbreds and different testers 

83 to partition out background variation from trans [11,14], or analyses of genomic sequence linked 

84 to genes [15]. Here, we used haplotypes in the gene region and partitioned variation in 

85 expression contributed by the cis haplotype. Grundberg et al. [16] found that 90% of cis variants 

86 were shared across plants growing in different environmental conditions and only a few cis 

87 variants were environment specific as opposed to trans variants. The cis component of variation 

88 is less sensitive to genetic and environmental perturbation, so, they can be stable across different 

89 contexts and biological replicates. Partitioning out the variation due to trans from overall 

90 expression allowed us to get expression effect associated with the cis haplotype. We called this 

91 transferrable portion of the gene expression as the cis Haplotype Associated RNA Expression 

92 (HARE). We hypothesized that HARE would be more transferable across tissues than total 

93 measured transcript expression. Moreover, the consistent functional and structural information in 

94 HARE would result in higher prediction accuracy than total measured expression in predicting 

95 many complex traits.

96

97 We used maize to study transferability across different systems (tissues and populations) as it is 

98 an important cereal crop as well as an excellent model system for quantitative genetic studies 
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99 [17]. Maize’s genotypic and phenotypic diversity has been explored in several studies using 

100 different mapping populations, uncovering thousands of genotypes and traits [18]. One example 

101 is the Goodman Association panel, which represents the global diversity of inbred genotypes 

102 from public maize breeding programs, including approximately 280 genotypes from tropical and 

103 temperate regions, sweet corn, and popcorn lines [19]. The nested association mapping panel 

104 (NAM) includes a set of approximately 5,000 recombinant inbred lines developed from 25 

105 diverse inbreds crossed to a common parent,  B73 [20,21]. NAM captures a large proportion of 

106 diversity in maize with less confounding by population structure as would occur in an association 

107 mapping panels. Both populations have been extensively genotyped and phenotyped for complex 

108 traits [22–25]. In addition, the Goodman Association panel also has a large set of available 

109 expression data from diverse tissues [26]. Recently these populations were used in the 

110 development of a Practical Haplotype Graph (PHG) utilizing high quality assemblies of NAM 

111 founder lines [27]. The PHG summarizes the diversity of these lines as a collection of haplotypes 

112 in a graph [27]. In diverse species like maize, with rich allelic series, a wide range of possible 

113 alleles might result in the same molecular outcome (e.g., gene expression, protein expression, 

114 etc.), a process known as equifinality. HARE can parsimoniously summarize a large series of 

115 allelic variants including causal variants, resulting in transferability across populations. 

116 Therefore, we hypothesized that HARE would be functionally relevant beyond genomic 

117 relationships and would result in higher prediction accuracy than haplotype structure when used 

118 to predict many complex traits within and across populations.

119

120 To test these hypothesis, we designed a novel method for imputing expression associated with 

121 haplotypes in the genic regions by HARE and studied the transferability of imputed expression 
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122 across tissues and populations. The HARE estimates were imputed in NAM founder’s genic 

123 haplotypes using gene expression data previously collected in seven diverse tissues [26]. The 

124 objectives of the study were to: i) partition gene expression variation into cis and trans 

125 components, ii) impute HARE in NAM and the Goodman Association panels based on the 

126 shared NAM founder’s haplotypes, iii) assess prediction of many complex traits by using HARE, 

127 randomly permuted HARE (preserving haplotype structure only), and measured expression 

128 within and across populations, and iv) integrate HARE from different tissues to predict complex 

129 phenotypes within and across populations.

130

131 Results

132

133 Phenotypic and genetic diversity in NAM and Goodman Association panel

134 The phenotypic distribution of 26 diverse traits is presented in S1 Fig, where the average trait 

135 value was higher in 18 traits in NAM than Goodman Association panel. The haplotype frequency 

136 was also variable across these two panels (S2 Fig). The median haplotype count across genes 

137 (reference regions) was 100 in NAM whereas it was 8 in the Goodman panel. The majority of 

138 haplotypes were present in 100 lines as expected from biparental populations with 200 inbred 

139 progenies in NAM. Each reference region in NAM was dominated by haplotypes from the 

140 common parent (B73), representing half of the haplotypes. We also calculated haplotype entropy 

141 from haplotype frequency counts in each reference region to reflect the average information 

142 content of haplotypes in reference regions. We observed a higher median entropy of 3.03 in 

143 Goodman panel when compared to 2.3 in NAM (S2 Fig). 

144
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145 Variance partition in expression

146 We hypothesized that the majority of the expression would be contributed by trans acting factors 

147 as compared to the cis component. To test this hypothesis, we fit the model with haplotypes in 

148 each gene region as cis and the haplotype relationship matrix (HRM) combined across all genes 

149 as trans (model 1; Fig 1, B). For most of the genes, higher variance in RNA expression was 

150 explained by the trans component (Fig 2a right) as compared to the cis component (Fig 2a left), 

151 irrespective of the tissue. Overall, cis haplotypes contributed only 34% (31- 38% across 

152 individual tissues) of the total genetic variation in expression across all tissues.

153

154 The total heritability was quantified as the proportion of variation contributed by cis and trans 

155 components to the total variation in gene expression. Overall, the gene expression was highly 

156 heritable with an average ranging from 50% to 59% across tissues (Fig 2b right). Though the 

157 gene expression was highly heritable, the heritability was largely contributed by trans compared 

158 to cis (Fig 2b). The large effect of trans could be due to many small-effect molecular 

159 connections from trans regulators [11,28].

160

161 We analyzed the result separately for a set of genes (~8,000 genes) with higher expression across 

162 each tissue to see if the patterns in their expression were any different from other genes. The cis 

163 haplotype explained a similar amount of variation (median 33%), however, the heritability 

164 increased slightly from a median of 54% to 60% across all tissues in a set of highly expressed 

165 genes.

166

167 Transferability of Haplotype Associated RNA expression (HARE)

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442099doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442099


10

168 We used three different models to estimate HARE. Model 1 included both cis and trans fit as 

169 random effects, and model 2 and model 3 included only cis fit either as a fixed or random effect. 

170 To determine how close the HARE estimates were to measured expression, we estimated their 

171 correlations across all tissues. A correlation close to 1 implied that the majority of variation in 

172 gene expression was contributed by cis, whereas a correlation close to 0 meant most expression 

173 was contributed by trans. The overall distribution across all expressed genes was similar in all 

174 tissues and models with a mean correlation of 0.44 (Fig 3).

175

176 We hypothesized that HARE would include the transferable portion of gene expression based on 

177 the underlying haplotype. To test this, we looked at pairwise correlations of HARE from all three 

178 models and measured transcript expression across all combinations of genes and tissues. 

179 Correlation coefficients ranged from -1 to 1 in all 21 different combinations of 7 diverse tissues 

180 (Fig 4, S3 Fig). The median correlation coefficient in measured expression was 0.14 across all 

181 tissues, whereas it was 0.4 in HARE. Correlation across tissues was larger for a set of highly 

182 expressed genes (~8,000 genes) as compared to the overall set. The median correlation across 

183 tissues increased from 0.14 to 0.21 in measured expression and 0.4 to 0.53 in HARE (S5 Fig) in 

184 the highly expressed gene set. The HARE imputed from all three models followed similar trends 

185 of higher correlation for most of the genes across all tissues as compared to measured transcript 

186 expression. Closely related tissues -- for example, mature mid-leaf tissue sampled during midday 

187 (LMAD) and midnight (LMAN) were more correlated than other combinations, both in 

188 measured expression and HARE (S3 Fig), reflecting the influence of shared gene regulation 

189 mechanisms driving these correlations in leaf tissues.

190
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191 We looked further into highly correlated genes (correlation > 0.75) and poorly correlated genes 

192 (correlation -0.05 to 0.05) across all tissue combinations to see if the large correlations were the 

193 result of some very lowly expressed genes. We examined expression in each tissue and filtered 

194 values for genes with fragments per million counts <5. In tissue LMAN, out of 10,600 genes 

195 with low correlation across tissues, only 3,000 lowly expressed genes were filtered out. Out of 

196 11,500 genes with high correlation across tissues, only 1,400 genes showed low expression 

197 values across tissues. Therefore, the lowly expressed genes did not drive the higher correlation of 

198 HARE estimates across tissues.

199

200 Genomic prediction using HARE

201 The high correlation of HARE estimates across tissues suggests that consistent and transferable 

202 genetic information is present in HARE. The functional application of HARE was evaluated 

203 using genomic prediction within and across populations for 26 agronomically important traits in 

204 maize (Table 1). Transferability across populations was evaluated based on prediction accuracy, 

205 calculated as the Pearson correlation of observed and predicted trait values. The genomic 

206 prediction models were trained to predict traits within and across populations in maize. First, we 

207 compared prediction accuracies in three sample traits (days to anthesis, days to silking, and plant 

208 height) using HARE estimates and their randomly permuted values (“random HARE”, 

209 representing only haplotype structure; see Materials and methods), from three different methods 

210 (models 1, 2, and 3). We did not see any significant differences in accuracy using any of these 

211 imputation methods (S6 Fig), so we used HARE estimates from model 1 (cis effects adjusted 

212 from trans effects) to predict all 26 traits within panel in the Goodman Association panel and 

213 across panels in the Goodman Association and NAM. 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442099doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442099


12

214

215 Within-panel prediction using HARE as compared to measured expression or haplotype 

216 structure (random HARE)

217 The comparison of prediction accuracy using measured expression and HARE was conducted in 

218 the Goodman panel to test the hypothesis that the prediction using HARE would be higher than 

219 measured expression. Prediction accuracy by measured expression was highly variable across 

220 traits and tissues; in contrast, prediction accuracy by HARE was less variable across tissues. The 

221 highest accuracy was observed for flowering time traits (e.g., days to anthesis up to 0.9), using 

222 HARE from all tissues, or measured expression from mature mid-leaf tissues (LMAD and 

223 LMAN). Overall, HARE resulted in higher prediction accuracy for all 26 traits, compared to 

224 measured expression in any tissue (Fig 5a and S7 Fig). The highest accuracy increase was for the 

225 number of brace roots, which increased from 0.21 to 0.5 using HARE from germinating root (S7 

226 Fig). However, the median increase across tissues was highest for trait kernel weight, which 

227 increased from 0.2 to 0.5 (Fig 5a). Also, HARE resulted in significantly higher prediction 

228 accuracy compared to random HARE for 24 traits (P-value < 0.05) (Fig 5b). Therefore, 

229 partitioning expression at the level of gene haplotypes results in higher prediction accuracy, 

230 when compared to predictions by measured expression or haplotype structure (random HARE).

231

232 Cross-panel prediction using HARE as compared to haplotype structure (random HARE)

233 For all 26 traits and 7 diverse tissues, prediction models were trained using HARE or random 

234 HARE across panels in NAM and the Goodman Association to determine if HARE carries 

235 functional information beyond haplotype structure. HARE often improved prediction accuracy of 

236 many traits when the model was trained in NAM or the Goodman panel as compared to random 
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237 HARE. HARE significantly increased accuracy by 34.6% and decreased 1.7% across all traits 

238 and tissue combinations when the model was trained in NAM (Fig 6a and S1 Table) and only 

239 significantly increased by 21.8% when trained in Goodman (Fig 6b and S2 Table). The accuracy 

240 was significantly higher in 17 out of 26 traits when trained in NAM and tested in the Goodman 

241 panel, versus 19 out of 26 traits when trained in Goodman panel and tested in NAM (P-value < 

242 0.05). However, the increase in accuracy was highly variable across these two panels. The 

243 increase was as high as 15% (for morphological traits: plant height and leaf length) when the 

244 model was trained in NAM and tested in the Goodman panel; whereas it was less than 10% when 

245 the model was trained in the Goodman panel and tested in NAM (Fig 6a, 6b, and 7). The 

246 increase in accuracy over random HARE was also observed when a model was trained only in 

247 the sample of 250 NAM RILs (a similar size as the Goodman panel, 10 sample RILs from 25 

248 families) to predict 3 traits (Days to anthesis, Days to silking, and Plant height) in Goodman 

249 panel (S8 Fig). When the model was trained in NAM the increase in prediction accuracy reached 

250 up to 16% over random HARE for the morphological traits, 10% for flowering traits, 8% for 

251 yield traits, 12% for kernel composition, and 6% for disease related traits (S1 Table). In general, 

252 traits in yield and disease related categories had the lowest accuracy when compared to the traits 

253 in other categories. Genomic prediction models using HARE could improve prediction accuracy 

254 with simple computational work without any additional cost for data generation. Therefore, 

255 haplotype-based models have the potential to improve genomic prediction across populations; 

256 however, the improvement depends on the traits of interest. The overall number of significant 

257 improvements was higher when using mean or maximum expression, when compared to using 

258 the expression of individual tissues, in both directions. Therefore, integrating expression from 
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259 diverse tissues as mean or maximum expression may contribute to further improvements in 

260 prediction accuracy.

261

262 Discussion

263 Cis haplotypes explained one-third of the genetic variation in expression

264 Consistent with other studies, we found the vast majority of expression to be heritable [28–30]. 

265 In eQTL mapping, cis-eQTL can seem predominant as they are frequently the single largest QTL 

266 for a given gene, but this is likely a power and multiple testing issue [12]. By using variance 

267 partitioning and assuming a polygenic model, we are likely accurately estimating the relative 

268 importance of these two components, cis and trans.

269 We showed that cis haplotype explained around 34% of variation in expression, which given the 

270 rapid linkage disequilibrium decay surrounding the gene is still extremely enriched for variance. 

271 Similar results were observed by Lemmon et al. [30] in maize and teosinte using hybrid allele 

272 specific expression, a complementary technique to our approach. This agree with our molecular 

273 knowledge, where, dozens of transcription factors likely regulate each gene [13]. These 

274 transcription factors are a result of any regulatory genes modelled as trans. In contrast, cis 

275 variability is a result of variation within or around genes only, empirically lowering the amount 

276 of variability explained by a cis as compared to the overall trans effect as observed in similar 

277 experiments in human and yeast [12,29].

278

279 HARE was highly transferable across tissues as compared to measured transcript 

280 expression
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281 Variation in gene expression across tissues, developmental stages, genotypes, and experimental 

282 conditions has been shown in earlier studies in plants and humans [26,33–35]. Lower 

283 correlations in expression for similar genes have been observed across populations in Mogil et al. 

284 [36], therefore, high gene expression in one population may not always be as high in diverse 

285 panels. The lack of strong correlations in measured transcript expression may result from trans 

286 effects in the expression, which are specific to tissues, genetic backgrounds, or environmental 

287 conditions [11] (S4 Fig). With HARE, we observed higher transferability across tissues as this 

288 portion of the variation in gene expression was less sensitive to environmental perturbations and 

289 biological contexts. The cis regulatory mutations affect expression of fewer genes compared to 

290 trans effects, so, they result in less pleiotropy and involve fewer functional tradeoffs [37]. In the 

291 absence of large pleiotropic effects, selection can act more consistently, so cis effects may be 

292 more transferable across different backgrounds [37,38].

293

294 HARE can integrate a rich allelic series that is more transferable across different contexts than 

295 measured transcript expression which is a result of cis, trans, their interaction, and environmental 

296 effects. Allelic richness is more pronounced in species like maize, which has 20 times higher 

297 nucleotide diversity than human beings [39]. Because of high allelic richness in maize, a wide 

298 range of possible alleles might lead to the same molecular outcome (for example, gene 

299 expression, protein expression, etc.), a concept known as equifinality. Due to equifinality, it has 

300 been observed that allelic variants are not always shared across genomes, and transcription is not 

301 always correlated with translation [40]. However, the cis portion of expression that summarizes 

302 allelic richness is highly transferable across tissues. The cis variants in HARE located in the 

303 close promoter, 5’ and 3’ untranslated regions, introns and the gene regions are likely consistent 
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304 across tissues. Further research is needed to understand the effect of enhancer and tissues 

305 interaction in the variation on cis effects, however the current study suggests that it’s not the 

306 dominant factor. 

307

308 HARE improved prediction over transcriptome expression

309 Biological information flows along the central dogma from the genome to transcriptome to 

310 proteome to metabolome, and finally to complex phenotypes [41]. For most trait and tissue 

311 combinations, transcriptome expression yielded lower prediction accuracy when compared to 

312 HARE (Fig 5a and S7 Fig). Furthermore, we observed less variability in prediction accuracy 

313 using HARE, which points to the context dependence of RNA expression. HARE owes its 

314 consistent advantage in prediction accuracy to functional information that does not include non-

315 genetic sources of variability in RNA expression (interactions among trans and cis factors and 

316 environment). Transcriptome data from mature leaf tissues yielded higher prediction accuracy 

317 for most of the phenotypes as compared to the young developing tissues from shoots, roots, or 

318 kernels tissue, highlighting the variability in expression regulation across different tissues [26]. 

319 Therefore, gene expression in different tissues may not capture the same functional information. 

320 Most of the phenotypes in this study were measured under field conditions in mature tissues or 

321 kernels in different seasons (e.g., flowering traits, agronomic/field traits). Therefore, mature leaf 

322 tissue’s expression measured in the field should be “closer” to these phenotypes, allowing higher 

323 prediction accuracy, compared to expression at the seedling stage measured under controlled 

324 conditions. With HARE, the contextual issue was less pronounced resulting in more stable 

325 prediction accuracy from any of these tissues.

326
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327 Baseline for comparison of genomic prediction models is important

328 To determine if haplotype expression carries functional information in addition to haplotype 

329 structure in genomic prediction, we used genetic signals produced by random HARE as a 

330 baseline for our genomic prediction models. Prior studies have used different baselines to assess 

331 genomic prediction models. For example, Westwhues et al. [42] used traditional pedigree BLUP 

332 as a baseline for predicting seven complex traits in hybrids as compared to using genomic 

333 sequence, metabolomes, transcriptome or a combinations of these; Azodi et al. [2] used the first 

334 five principal components in the marker data and compared these with the genomic and 

335 transcriptome data to predict three traits; and Li et al. [5] used a genomic BLUP model with SNP 

336 data and compared it to extensions with additional endophenotypes in the model to predict nine 

337 traits. In this study, randomly permuting the HARE estimates 100 times while preserving 

338 haplotype structure, allowed us to assess the accuracy of genomic prediction in the absence of 

339 functional information in haplotype values, and to directly test the significance of HARE over 

340 haplotype structure. The significantly higher prediction accuracy of HARE affirmed that HARE 

341 carried functional information beyond haplotype structure.

342

343 HARE captured functional information beyond haplotype structure

344 The benefits of using haplotypes over SNPs, and transcriptomes over SNPs in genomic 

345 prediction has been highlighted in earlier studies [4,5,7–10]. Our study here integrated both 

346 haplotypes and transcriptome information (as HARE) in the prediction of complex traits. 

347 Haplotypes can capture the interaction and epistasis occurring in genic regions, which cannot be 

348 captured by SNP data alone [4–6,42]. Another issue in genomic prediction models is 

349 overparameterization, where there are more predictors than observations [2,43]. By using 
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350 transcriptome data rather than SNPs as predictors, the feature dimension can be reduced from 

351 millions to thousands, which should make the model more transferable by addressing the curse 

352 of dimensionality. This approach could be further improved by functional annotations about gene 

353 expression, which could give more or less importance to some genes in HARE, based on prior 

354 knowledge about their effect on phenotypes.

355

356 Tapping into a new source of functional information using HARE

357 Here, we presented a novel method for imputing HARE using the Practical Haplotype Graph 

358 (PHG) and a mixed model approach (Fig 1, 8). Measuring the transcriptome in multiple tissues 

359 for every population is expensive, while imputing expression is easier and cost effective. Here 

360 we used existing transcriptomes profiled in 7 diverse tissues of the Goodman Association panel 

361 consisting of 280 diverse lines to get HARE estimates in NAM founders’ haplotypes. HARE 

362 estimates were then imputed in the NAM panel consisting of 5000 lines using the PHG. Imputing 

363 expression was not only cheaper, it also contributed to more robust genomic predictions. Other 

364 methods for predicting expression from genomic sequence were previously reported however 

365 these methods are less accurate [15,44]. Compared to these methods, our approach here requires 

366 sparse sequencing data only to obtain haplotypes by the PHG and expression in some genotypes. 

367 Therefore, it was less computation intensive and more cost-effective than approaches based on 

368 deep neural networks applied to complete sequencing data.

369

370 Conclusion

371 We showed that by leveraging the diverse high-quality assemblies through a haplotype graph, we 

372 can impute cis Haplotype Associated RNA Expression in diverse panels. By showing higher 
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373 transferability across tissues and moderate correlation with measured expression, we have 

374 demonstrated that imputing HARE could generate more stable measurements of gene expression 

375 across biological contexts. Also, we have demonstrated that HARE estimates could improve 

376 genomic prediction for most complex traits in maize over haplotype structure or measured 

377 expression. The important consideration in many genomic prediction and transcriptome studies is 

378 the cost of generating the genomics and transcriptomics data. Our approach here utilizes sparse 

379 sequencing data to obtain haplotypes and impute expression on those haplotypes using the 

380 expression measured in some related genotypes. 

381 Future experiments could aim at using HARE to predict across species, using gene regulatory 

382 networks to provide priors for key genes and trait combinations, refining expression estimates by 

383 adding machine learning models that predict expression from DNA sequence, and finally more 

384 explicitly modeling tissue by genotype interactions. However, because a substantial proportion 

385 of expression is stable across tissues and it can be estimated by variance partitioning, HARE can 

386 be applied to successfully improve phenotypic prediction at modest cost.

387

388 Materials and methods

389

390 Phenotypic data

391 Two maize panels were evaluated for prediction accuracy: the US Nested Association Mapping 

392 (NAM) panel and the Goodman Association panel representing the genetic diversity among 

393 maize elite inbred lines. The NAM panel was developed from 25 parents crossed to a common 

394 parent B73 and selfed to obtain 200 homozygous recombinant inbred lines (RILs) from each 

395 cross, as described in McMullen et al. [20] and Gage et al. [21]. The Goodman Association panel 
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396 represents the global diversity of inbred lines in public maize breeding programs, including ~282 

397 genotypes from tropical and temperate regions, sweet corn, and popcorn lines [19]. The 25 NAM 

398 founders are part of the Goodman Association panel, so we excluded them from the Goodman 

399 Association panel set for cross-panel prediction.

400

401 We evaluated genomic prediction models for 26 traits belonging to different groups: flowering, 

402 morphology, yield-related, kernel composition, and disease (Table 1). These traits were chosen 

403 from three publications where they were jointly phenotyped in the two panels [22–25]. 

404 Phenotypic evaluations for these traits were performed in 2006 and 2007 across 11 

405 environments, though not all traits were measured in all environments. The field experiments 

406 were conducted using an incomplete block alpha lattice design. The phenotypic values were best 

407 linear unbiased predictors (BLUPs), details on the phenotypic measurement and BLUP 

408 calculation are presented in the respective studies (Table 1). 

409

410 Table 1. Selected traits for genomic prediction 

Category Traits Reference

Flowering Days to silking [25]

 Days to anthesis [25]

 Anthesis silking interval [25]

 Tassel length [22]

 Tassel primary branches [22]
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Morphology Plant height [25]

 Ear height [25]

 Leaf length [22]

 Leaf width [22]

 Leaf angle [22]

 Nodes below ear [22]

 Nodes above ear [22]

 Number of brace roots [22]

Yield related Cob diameter [22]

 Cob length [22]

 Ear row number [22]

 Kernel number per row [22]

 Ear mass [22]

 Cob mass [22]

 Kernel wt [22]

 Test wt [22]

 Total kernel number [22]

Kernel composition Starch [24]

 Protein [24]
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 Oil [24]

Disease Southern leaf blight [23]

411

412 PHG database for NAM and Goodman Association panels

413 Details on the Practical Haplotype Graph (PHG) were described in [27]. In brief, the database 

414 consisted of the genomes of 26 NAM parents and one additional stiff stalk inbred B104. The 

415 genomes were divided into reference ranges, where the edges of each reference range were 

416 defined by gene boundaries in B73 RefGen_v5. A total of 71,354 reference ranges were 

417 identified, where half of them were genic regions. The genotyping-by-sequencing (GBS) reads 

418 from NAM RILs [45] and the Goodman Association panel [46] were mapped to the PHG 

419 database to identify the haplotypes in these populations based on the 27 genomes in the PHG. 

420 The SNP calls thus generated were tested for error rate and heterozygosity, imputation accuracy 

421 as presented in the original publication [27].

422

423 Haplotype ID analysis

424 For each line in the NAM and Goodman panels, a haplotype ID was obtained in each reference 

425 region from the PHG database using function pathsForMethod in the rPHG package in R 

426 (Bradbury et al., in prep). Since the reference ranges included both genic and intergenic regions, 

427 the ranges were filtered to yield only the genic reference ranges based on the B73 RefGen_v5 

428 annotations. Shannon entropy of haplotypes counts in the filtered genic reference range were 

429 calculated using the R entropy package using the maximum likelihood method [47].

430

431 Gene expression data
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432 Gene expression data were obtained from Kremling et al. [26]. Details on sampling and 

433 expression quantification were presented in the original publication. Seven different tissues 

434 (germinating seedlings root: GRoot; germinating seedlings shoot: GShoot; two centimeters from 

435 base of leaf 3: L3Base; two centimeters from tip of leaf 3: L3Tip; mature mid-leaf tissue sampled 

436 during mid-day: LMAD; mature mid-leaf tissue sampled during mid-night: LMAN; and 

437 developing kernels harvested after 350 GDD after pollination: Kern) were included in the 

438 analysis. Along with the expression from 7 different tissues, maximum expression and average 

439 expression per gene were calculated using a custom script in R.

440

441 The gene expression data from version 3 were obtained in version 5 of the genome by mapping 

442 B73 v3 genes to the v5 reference genome. Genes that did not map or mapped in multiple 

443 positions were removed from the analysis. The final genic haplotype matrix included ~18,000 

444 genes with one-to-one correspondence between the two versions of the genome.

445

446 Variance partition in gene expression

447 The variance components in gene expression were estimated using the R package regress and 

448 genetic values were obtained by solving mixed model equations by restricted maximum 

449 likelihood (REML) [48]. We fit a linear mixed model for each gene to partition variance into the 

450 fraction attributable to the genic reference range (haplotypes representing cis effects) with and 

451 without controlling for trans effects. The effects of haplotypes in the genic reference range were 

452 fit as fixed or random as described below. The statistical models for variance partition were:

453

454 1. 𝐲 =  𝟏𝜇 + 𝐙𝑐𝑖𝑠𝛂 + 𝐞 (cis fixed effects)
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455 2. 𝐲 =  𝟏𝜇 + 𝐮𝑐𝑖𝑠 + 𝐞 (cis random effects)

456 3. 𝐲 =  𝟏𝜇 + 𝐮𝑐𝑖𝑠 + 𝐮𝑡𝑟𝑎𝑛𝑠 + 𝐞 (cis + trans random effects)

457 where 𝐲 is the RNA expression at a given gene, 𝐙𝑐𝑖𝑠 is the design matrix for the gene’s cis 

458 haplotypes, 𝛂 is the vector of fixed effects of cis haplotypes on gene expression, 𝐮𝑐𝑖𝑠~𝑁(𝟎, 𝐇𝑐𝑖𝑠

459 𝜎2
𝑐𝑖𝑠) is the vector of cis haplotypic effects (𝐇𝑐𝑖𝑠 =

𝐙𝑐𝑖𝑠𝐙𝑇
𝑐𝑖𝑠

𝑡𝑟(𝐙𝑐𝑖𝑠𝐙𝑇
𝑐𝑖𝑠)/𝑛), 𝐮𝑡𝑟𝑎𝑛𝑠~𝑁(𝟎,  𝐇𝑡𝑟𝑎𝑛𝑠𝜎2

𝑡𝑟𝑎𝑛𝑠) is the 

460 vector of trans haplotypic effects as captured by the design matrix 𝐙𝑡𝑟𝑎𝑛𝑠 for haplotypes at all 

461 genes (𝐇𝑡𝑟𝑎𝑛𝑠 =
𝐙𝑡𝑟𝑎𝑛𝑠𝐙𝑇

𝑡𝑟𝑎𝑛𝑠

𝑡𝑟(𝐙𝑡𝑟𝑎𝑛𝑠𝐙𝑇
𝑡𝑟𝑎𝑛𝑠)/𝑛), 𝐞~𝑁(𝟎, 𝐈𝜎2

𝑒) is the vector of errors, n is the number of lines in 

462 the panel(s), and tr is the trace operator (sum of diagonal elements).

463 The proportion of variance explained by cis and trans components was estimated from model 3. 

464 The cis haplotype variance was estimated as ℎ2
𝑐𝑖𝑠 =

𝜎2
𝑐𝑖𝑠

(𝜎2
𝑐𝑖𝑠 +  𝜎2

𝑡𝑟𝑎𝑛𝑠 +  𝜎2
𝑒), and trans variance was 

465 estimated as ℎ2
𝑡𝑟𝑎𝑛𝑠 =

𝜎2
𝑡𝑟𝑎𝑛𝑠

(𝜎2
𝑐𝑖𝑠 +  𝜎2

𝑡𝑟𝑎𝑛𝑠 +  𝜎2
𝑒). The proportion of heritable variance is the total 

466 proportion of variance explained by cis and trans estimated as 
𝜎2

𝑐𝑖𝑠 + 𝜎2
𝑡𝑟𝑎𝑛𝑠

(𝜎2
𝑐𝑖𝑠 +  𝜎2

𝑡𝑟𝑎𝑛𝑠 +  𝜎2
𝑒), and cis portion 

467 of heritable variance estimated as 
𝜎2

𝑐𝑖𝑠

(𝜎2
𝑐𝑖𝑠 +  𝜎2

𝑡𝑟𝑎𝑛𝑠 ).

468

469 Haplotype associated RNA expression (HARE)

470 The HARE estimates were obtained using the regress package in R and genetic values were 

471 obtained by solving mixed model equations by REML [48]. Models 1, 2, and 3 were used to 

472 obtain HARE estimates for each haplotype in all genic regions.

473
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474 Expression matrices were generated for genes in the Goodman panel and NAM based on the 27 

475 haplotypes from NAM parents and B104. Missing haplotype expression was imputed using mean 

476 imputation using a custom script in R. The HARE expression matrix was compared with the 

477 measured expression matrix in the Goodman panel by pairwise correlation of genes using the cor 

478 function in R. Pairwise correlation was calculated between measured expression and HARE 

479 estimated across all genes. Similarly, transferability across tissues were assessed by pairwise 

480 correlation of genes across all 21 different combinations of 7 tissues for both measured 

481 expression and HARE.

482

483 Genomic prediction model and model performance

484 The genomic prediction model was fit using ridge regression using the glmnet package in R [55] 

485 and the optimal value of the regularization parameter λ was determined by minimum mean 

486 squared error in 10-fold cross-validation.

487

488 For a given set of n individuals and p genes, the following linear model was fit:

489 𝐲 =  𝐗𝛃 + 𝛆 

490 Where y is a n-vector of phenotypic values, X is the n x p matrix of expression values (measured 

491 expression or HARE estimates), 𝛃 is the p-vector of effects of expression on phenotypes and 𝜺

492 ~𝑁(𝟎, 𝐈𝜎2
𝜀) is the vector of errors.

493

494 Assessment of genomic prediction ability

495 Part of the signal in genomic prediction by HARE may have been due to the sharing of 

496 haplotypes in these populations. Therefore, we established a baseline for genomic prediction by 
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497 using random HARE estimates for haplotypes while preserving the haplotype structure (random 

498 HARE). For random HARE, the HARE estimates were permuted at the haplotype level, so that 

499 each gene had the same HARE estimates, but HARE estimates were randomly matched to 

500 haplotypes. For example, if lines 1 and 2 carried the same haplotype at gene j, after permutation, 

501 both lines got the same random value for imputed expression (Fig 1). The significance of using 

502 HARE over random HARE was assessed by using a Monte Carlo procedure with 100 random 

503 permutations of HARE [49]. P-values are calculated as 
(𝑟 + 1)
(𝑘 + 1) where 𝑘 = 100 is the total number 

504 of permutations and 𝑟 is the number of permutations with accuracy greater than using HARE 

505 (accuracy of random HARE greater than accuracy of HARE).

506

507 The prediction accuracy of the genomic prediction models was defined as the Pearson correlation 

508 coefficient between the observed trait values (𝐲) and predicted values (𝐲) in each of the test sets 

509 using the cor function in R.

510

511 Within-panel prediction

512 In within-panel prediction, the prediction was carried out only in the Goodman panel using the 

513 measured expression, HARE, and random HARE (representing haplotype structure). We used a 

514 5-fold cross-validation procedure for all data sets. The panel was randomly partitioned into 80% 

515 training set and 20% testing set. Partitions were repeated 20 times. Pearson correlation was 

516 individually calculated in each of the 20 partitions and averaged over partitions to test for 

517 significance. For a single trait and tissue combination, the model was run for 2000 times for 

518 random HARE and 20 times for HARE and measured expression.

519

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442099doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442099


27

520 Cross-panel prediction

521 For cross-population prediction, the model was either trained in NAM and tested in the 

522 Goodman panel or vice versa for all traits. The 25 NAM founders are part of the Goodman 

523 Association panel, so we excluded them from the Goodman Association panel set for cross-panel 

524 prediction. To account for sample size differences (5000 in NAM versus 250 in the Goodman 

525 panel), 20 random subsets of NAM equivalent to the size of Goodman panel were created, taking 

526 10 RILs from each family. The model was trained in the 20 random subsets of NAM RILs and 

527 predicted in the Goodman panel and vice versa for three sample traits: Days to anthesis (DTA), 

528 Days to silking (DTS), and Plant height (PH). The prediction accuracy was averaged across 20 

529 random subsets.

530
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661 S1 Fig. Phenotypic distribution of 26 traits in NAM and the Goodman Association panel

662

663 S2 Fig. a. Haplotype counts distribution in the Goodman association panel (left) and NAM panel 

664 (right) across all genic reference ranges. b. Haplotype entropy in Goodman (left) and NAM 

665 (right) panel in each reference range. Median haplotype counts were 8 and 100 in the Goodman 

666 panel and NAM, respectively, resulting in higher entropy in the Goodman panel as compared to 

667 NAM. Entropy was calculated from haplotype counts in each reference region.

668

669 S3 Fig. Correlation distribution of expression between tissues. The four panels represent HARE 

670 estimates from models 1 (cis only fixed), 2 (cis only random), and 3 (cis random while 

671 accounting for trans), as well as measured expression. The different color lines in each panel 

672 represent 21 different combinations of the 7 different tissues as labeled on the right: germinating 

673 seedlings root (GRoot), germinating seedlings shoot (GShoot), two cm from base of leaf 3 

674 (L3Base), two cm from tip of leaf 3 (L3Tip), mature mid-leaf tissue sampled during mid-day 

675 (LMAD), mature mid-leaf tissue sampled during mid-night (LMAN), and developing kernels 

676 harvested after 350 growing degree days after pollination (Kern). The imputed expression from 

677 models was highly correlated between tissues when compared to the measured transcript 

678 expression. In all panels, closely related tissues like matured mid-leaf tissue expression sampled 

679 during mid-day (LMAD) and matured mid-leaf tissue expression sampled during mid-night 

680 (LMAD) were highly correlated.

681

682 S4 Fig. Correlation distribution of trans components of expression between tissues. The different 

683 color lines in each panel represent 21 different combinations of the 7 different tissues as labeled 
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684 on the right: germinating seedlings root (GRoot), germinating seedlings shoot (GShoot), two cm 

685 from base of leaf 3 (L3Base), two cm from tip of leaf 3 (L3Tip), mature mid-leaf tissue sampled 

686 during mid-day (LMAD), mature mid-leaf tissue sampled during mid-night (LMAN), and 

687 developing kernels harvested after 350 growing degree days after pollination (Kern). Similar to 

688 measured transcript expression, closely related tissues like matured leaf expression during the 

689 day (LMAD) and matured leaf expression during the night (LMAD) were highly correlated. 

690

691 S5 Fig. Haplotype associated RNA expression (HARE) was highly correlated across tissues as 

692 compared to measured transcript expression. Different colors represent HARE imputed from 

693 three statistical models: Model 1 (cis fixed effect), 2 (cis random effect), and 3 (cis + trans 

694 random effects), and measured transcript expression. The distribution is the pairwise correlation 

695 of ~8000 highly expressed genes across 21 different combinations from 7 different tissues.

696

697 S6 Fig. Prediction accuracy using HARE from model 1, 2, and 3 (see methods) for predicting 

698 three different traits: Days to Anthesis (DTA), Days to Silking (DTS), and Plant Height (PH) 

699 using a) model trained in NAM and tested in Goodman b) model trained in Goodman and tested 

700 in NAM. The different symbols represent HARE from different tissues: germinating seedlings 

701 shoot (GShoot), developing kernels harvested after 350 growing degree days after pollination 

702 (Kern), 2 cm from base of leaf 3 (L3Base), and mature mid-leaf tissue sampled during mid-day 

703 (LMAD). 

704

705 S7 Fig. Within-panel prediction accuracy in the Goodman panel using HARE (red dot), 100 

706 random HARE (box plot), and measured expression (blue dot) from individual tissues or all 
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707 tissues integrated as mean or maximum expression. Individual tissues included: germinating 

708 seedlings root (GRoot), germinating seedlings shoot (GShoot), two cm from base of leaf 3 

709 (L3Base), two cm from tip of leaf 3 (L3Tip), mature mid-leaf tissue sampled during mid-day 

710 (LMAD), mature mid-leaf tissue sampled during mid-night (LMAN), and developing kernels 

711 harvested after 350 growing degree days after pollination (Kern). The model was trained in 80% 

712 of the panel and tested in the remaining 20%.

713

714 S8 Fig. Change in prediction accuracy using HARE over the mean of random expression (blue 

715 dashed line) from five different tissues: germinating seedlings root (GRoot), two cm from base 

716 of leaf 3 (L3Base), mature mid-leaf tissue sampled during mid-day (LMAD), mature mid-leaf 

717 tissue sampled during mid-night (LMAN), and developing kernels harvested after 350 growing 

718 degree days after pollination (Kern). Genomic prediction models were (a) trained in the 

719 Goodman panel and tested in 20 subsets of NAM, (b) trained in 20 subsets of NAM and tested in 

720 the Goodman panel. The subsets of NAM were generated by randomly selecting 10 genotypes 

721 from each family resulting in a total of 250 genotypes (see methods). Accuracy was averaged 

722 over the 20 random subsets before determining significance. The black shapes represent 

723 statistically significant differences at P-values <0.05 and red shapes represent no statistical 

724 significance. P-values were calculated using a Monte Carlo procedure.

725

726 S1 Table. Prediction accuracy of 26 complex traits in the Goodman Association panel using 

727 HARE from seven diverse tissues: germinating seedlings root (GRoot), germinating seedlings 

728 shoot (GShoot), 2 cm from base of leaf 3 (L3Base), two cm from tip of leaf 3 (L3Tip), mature 

729 mid-leaf tissue sampled during mid-day (LMAD), mature mid-leaf tissue sampled during mid-
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730 night (LMAN), and developing kernels harvested after 350 growing degree days after pollination 

731 (Kern), mean, and maximum expression of genes across all tissues. P value (high) and P value 

732 (low) were calculated using a Monte Carlo procedure to test if the accuracy using HARE was 

733 significantly higher or lower than random HARE. Models were trained in NAM and tested in 

734 Goodman Association panel. 

735

736 S2 Table. Prediction accuracy of 26 complex traits in NAM using HARE from 7 diverse tissues: 

737 germinating seedlings root (GRoot), germinating seedlings shoot (GShoot), 2 cm from base of 

738 leaf 3 (L3Base), 2 cm from tip of leaf 3 (L3Tip), mature mid-leaf tissue sampled during mid-day 

739 (LMAD), mature mid-leaf tissue sampled during mid-night (LMAN), and developing kernels 

740 harvested after 350 growing degree days after pollination (Kern), mean, and maximum 

741 expression of genes across all tissues. P value (high) and P value (low) were calculated using a 

742 Monte Carlo procedure to test if the accuracy using HARE was significantly higher or lower than 

743 random HARE. Models were trained in Goodman Association panel and tested in NAM.

744

745
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746 List of Figures:

747

748 Fig 1. Experimental methods on calculating haplotype associated RNA expression (HARE) 

749 and using HARE values to predict complex traits. A. The haplotypes of 26 NAM founders 

750 and one additional stiff stalk inbred line were identified in each gene region of the Goodman 

751 Association panel by mapping GBS reads (presented in detail in Valdes Franco et al. [27]) to the 

752 indexed pangenome of 27 lines. Haplotype relationship matrices (HRMcis) were created in each 

753 gene region and all genic HRMcis were combined to get HRMtrans to control for trans effects, B. 

754 Using gene expression from seven tissues [26], fixed or random effects models were fitted in 

755 each gene region with or without controlling for trans effects for each gene, C. Models were 

756 trained using field phenotypes in the Goodman panel or the NAM panel using HARE estimates 

757 or 100 randomly permuted HARE values while preserving haplotype structure, and D. Trained 

758 models were used to predict complex traits across populations.

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.04.30.442099doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.30.442099


37

759

760

761 Fig 2. Cis haplotype explained one-third of the total genetic variance in expression. a. 

762 Proportion of variation explained by cis (left) and trans (right) components, b. Proportion of 

b.
.

a.
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763 heritable genetic variation over phenotypic variation (left) and proportion of heritable genetic 

764 variation explained by cis (right) in gene expression across seven different tissues. Heritable 

765 variation was calculated in each gene as the ratio of the sum of cis and trans variance to total 

766 variance. Different colors represent seven diverse tissues in maize: germinating seedlings root 

767 (GRoot), germinating seedlings shoot (GShoot), two cm from base of leaf 3 (L3Base), two cm 

768 from tip of leaf 3 (L3Tip), mature mid-leaf tissue sampled during mid-day (LMAD), mature mid-

769 leaf tissue sampled during mid-night (LMAN), and developing kernels harvested after 350 

770 growing degree days after pollination (Kern).

771

772

773 Fig 3. Haplotype associated RNA expression (HARE) was moderately correlated with 

774 measured RNA expression across seven diverse tissues. The different colors represent HARE 

775 imputed from three statistical models: Model 1 (cis fixed effect), 2 (cis random effect), and 3 (cis 
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776 + trans random effects). Transcripts from measured RNA expression was a result of genetic 

777 signals in both trans and cis. Therefore, the correlation was moderate for most of the genes. 

778

779

780 Fig 4. Haplotype associated RNA expression (HARE) was highly correlated across tissues 

781 as compared to measured transcript expression. Different colors represent HARE imputed 

782 from 3 statistical models: Model 1 (cis fixed effect), 2 (cis random effect), and 3 (cis + trans 

783 random effects), and measured transcript expression. The distribution is pairwise correlation of 

784 genes across 21 different combinations from 7 different tissues.

785
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786

787

788 Fig 5. HARE improved within-panel prediction accuracy over measured expression and 

789 random HARE for most of the traits. (a) Prediction accuracy within the Goodman Association 

790 panel using HARE and measured expression (measured_exp) from all tissues arranged by 

a.
.

b.
.
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791 prediction differential. (b) Change in prediction accuracy using HARE over the mean accuracy 

792 from random HARE (blue dashed line). Different symbols represent HARE from different 

793 tissues. The black shapes represent statistically significant differences at P-value <0.05 and red 

794 shapes are without significant differences. P-values calculated using Monte Carlo procedure. 

795

796

a.
.
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797

798 Fig 6. HARE improved cross-panel prediction accuracy over random expression values for 

799 most of the traits. Change in prediction accuracy using HARE over the mean accuracy from 

800 random HARE (blue dashed line) for models (a) trained in the Goodman panel and tested in 

801 NAM, (b) trained in NAM and tested in the Goodman panel. The different symbols represent 

802 HARE from different tissues: germinating seedlings root (GRoot), germinating seedlings shoot 

803 (GShoot), two cm from base of leaf 3 (L3Base), two cm from tip of leaf 3 (L3Tip), mature mid-

804 leaf tissue sampled during mid-day (LMAD), mature mid-leaf tissue sampled during mid-night 

805 (LMAN), and developing kernels harvested after 350 growing degree days after pollination 

806 (Kern). The black shapes represent statistically significant differences at P-values <0.05 and red 

807 shapes represent no statistical significance. P-values were calculated using a Monte Carlo 

808 procedure.

809

b.
.
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810

811 Fig 7. HARE increased prediction accuracy by up to 14% when the model was trained in 

812 NAM and tested in the Goodman panel. Summarized differences in prediction accuracy using 

813 HARE over the mean accuracy from random HARE (representing haplotype structure) across 26 

814 phenotypes and 7 diverse tissues. The blue dashed line is the mean of the average prediction 

815 accuracy using random HARE across each trait and tissue combination. 

816
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817

818 Fig 8. Graphical Summary of the Study. Cis haplotype associated RNA expression (HARE) 

819 was obtained from subtracting trans effects from measured expression. 1. The cis haplotypes 

820 explained one-third of the variation in expression. 2. The HARE estimates were highly 

821 transferrable across tissues compared to measured expression. 3. HARE improved prediction 

822 within and across populations in maize. 

823
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