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Genomic prediction in biparental tropical maize populations
in water-stressed and well-watered environments using
low-density and GBS SNPs

X Zhang1, P Pérez-Rodríguez2, K Semagn3, Y Beyene3, R Babu4, MA López-Cruz1, F San Vicente1, M Olsen1,
E Buckler5, J-L Jannink5, BM Prasanna3 and J Crossa1

One of the most important applications of genomic selection in maize breeding is to predict and identify the best untested lines
from biparental populations, when the training and validation sets are derived from the same cross. Nineteen tropical maize
biparental populations evaluated in multienvironment trials were used in this study to assess prediction accuracy of different
quantitative traits using low-density (~200 markers) and genotyping-by-sequencing (GBS) single-nucleotide polymorphisms
(SNPs), respectively. An extension of the Genomic Best Linear Unbiased Predictor that incorporates genotype × environment (GE)
interaction was used to predict genotypic values; cross-validation methods were applied to quantify prediction accuracy. Our
results showed that: (1) low-density SNPs (~200 markers) were largely sufficient to get good prediction in biparental maize
populations for simple traits with moderate-to-high heritability, but GBS outperformed low-density SNPs for complex traits and
simple traits evaluated under stress conditions with low-to-moderate heritability; (2) heritability and genetic architecture of target
traits affected prediction performance, prediction accuracy of complex traits (grain yield) were consistently lower than those of
simple traits (anthesis date and plant height) and prediction accuracy under stress conditions was consistently lower and more
variable than under well-watered conditions for all the target traits because of their poor heritability under stress conditions; and
(3) the prediction accuracy of GE models was found to be superior to that of non-GE models for complex traits and marginal for
simple traits.
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INTRODUCTION

In genomic selection (GS), the effect of all markers is estimated
simultaneously from a training population that has been both
phenotyped and genotyped, and then the genomic estimated breeding
values of the untested genotyped lines are computed as the sum of all
marker effects (Meuwissen et al., 2001). In GS, lines in the prediction
population are not phenotyped, only genotyped, thus reducing the
breeding cycle time and increasing the genetic gain per unit time. In
GS, all markers are fitted simultaneously to avoid biased marker effects
and capture all the small effects (Heffner et al., 2009, 2010). In plants,
Bernardo and Yu (2007) were the first to show, by simulation, the
benefits of GS in terms of genetic gains as compared with marker-
assisted selection. Also, de los Campos et al. (2009) and Crossa et al.
(2010, 2011, 2013a), using extensive empirical maize and wheat data,
demonstrated that using low-to-intermediate marker density and
pedigree information increased the prediction accuracy of unobserved
phenotypes. Massman et al. (2013a), in one biparental population,
gave empirical evidence that GS produced higher genetic gains than
marker-assisted selection for several traits.

Regarding the number of markers, it could be speculated that for
certain types of breeding populations and a specific range of markers,
more accurate genomic prediction could be achieved with high marker
density; however, increasing marker density above a certain level does
not produce an increase in prediction accuracy, as shown by de los
Campos et al. (2012) for height in a human population.
Genotyping-by-sequencing (GBS) is a high-throughput, multiplex

and short read sequencing approach that reduces genome complexity
via restriction enzymes, generates high-density genome-wide markers
(~1 million) at a low per-sample cost by tagging randomly shared
DNA fragments from different samples with unique, short DNA
sequences (barcodes) and pooling samples into a single sequencing
channel (Elshire et al., 2011). The GBS cost per sample is comparable
to (or lower than) the price of single-plex or array-based single-
nucleotide polymorphisms (SNPs). A GBS platform was recently used
to generate large numbers of SNPs in many species, exploring within-
species diversity and studying trait association in a diverse seed bank
collection (Poland et al., 2012a; Lu et al., 2013; Romay et al., 2013;
Glaubitz et al., 2014); GBS is also a promising genotyping method for
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GS application. The first evidence of the prediction accuracy of GBS in
plants came from Poland et al. (2012b), who showed good accuracy
using GBS in prediction models for polyploid wheat breeding, and
from Crossa et al. (2013a), who predicted doubled-haploid maize lines
using pedigree as well as imputed and unimputed GBS data.
Prediction within biparental populations is the most favorable

situation for GS in which the relationship between the training and
prediction sets is close, as they are derived from the same cross, with
the maximum linkage disequilibrium between quantitative trait loci
and markers (Bernardo and Yu, 2007). Several studies showed that
moderate-to-high prediction accuracy could be obtained in biparental
populations for traits with high heritability, even using low marker
density and a training population of relatively small size. A marker
density of 10–20 cM, corresponding to ~ 150 markers, is sufficient to
deliver good prediction accuracy within biparental maize populations
(Lorenzana and Bernardo, 2009; Albrecht et al., 2011; Lian et al.,
2014). In contrast, other studies mention that a high-density
genotyping platform (for example, GBS) may improve prediction
accuracy (Poland et al., 2012a; Crossa et al., 2013a; Massman et al.,
2013b). Further studies are still necessary to investigate the impacts of
GBS on prediction accuracy in biparental maize populations.
Despite the fact that, in maize (Zea mays L.) and other species,

different breeding schemes for GS have been examined (Bernardo and
Yu, 2007; Heffner et al., 2010; Riedelsheimer et al., 2012, 2013; Schulz-
Streeckab et al., 2012; Wang et al., 2012; Windhausen et al., 2012), the
most important issue for GS to be time and cost-saving is that the
correlation between predicted and true genotypic values (rMG = rMP/h,
where rMP is the correlation between predicted and observed values
and h is the square root of the heritability of the trait) must be high.
Recently, Lian et al. (2014) reported the mean and variability of rMG

for different traits in 969 biparental maize populations. The authors
found that for grain yield (GY) across the 969 biparental populations,
the mean rMG was 0.45, ranging from − 0.59 to 1.03; the lines within
each cross were genotyped with 31–119 SNPs, and the parents of the
biparental population were genotyped with 2911 SNPs. Crossa et al.
(2013b) showed prediction results from two biparental populations
that were genotyped with 250 SNPs and evaluated under severely
water-stressed (SS) and well-watered (WW) environments. Depending
on the heritability of the trait, the number of markers, the number of
lines within the biparental population and the prediction model used,
the correlation between observed and predicted values reached 0.40 in
one population when combining all SS and WW environments.
In plant breeding, multienvironment trials assessing genotype×

environment interactions (GE) have an important role in selecting
phenotypes with good performance and stability. Environmental
conditions modulate gene expression and this induces GE such that
the estimated genetic correlations of an individual line’s performance
across environments summarize the collective action of genes and
environmental conditions, regardless of how different regions of the
genome interact with different environmental factors. Despite the
importance of GE in plant breeding trials, most previous GS studies
only used single-environment prediction models; it was not until very
recently that studies demonstrated that multienvironment linear
mixed models can account for correlated environmental structures
within the Genomic Best Linear Unbiased Predictor (GBLUP) frame-
work and thus can predict performance of unobserved phenotypes
using pedigree and molecular markers. Burgueño et al. (2012) used
marker and pedigree GBLUP models for assessing GE under genomic
prediction and Heslot et al. (2014) incorporated crop modeling data
for studying genomic GE. In a recent study, Jarquín et al. (2014)
proposed a random-effects model where the main and interaction

effects of markers and environmental covariates are introduced using
covariance structures.
Common studies for assessing genomic prediction have not taken

advantage of the response in correlated environments and thus have
not exploited the potential of these environmental structures for use in
genomic prediction. For example, the prediction accuracy for GY in
biparental populations does not seem to rise above a 0.4–0.5 accuracy
level (Crossa et al., 2013a; Lian et al., 2014). A question that has yet to
be answered is whether denser markers coupled with exploiting
correlated environmental structures improve the prediction accuracy
for different traits measured under SS and WW environments.
Therefore, the main objectives of this study were to: (1) evaluate the
prediction accuracy for different traits in 19 biparental maize popula-
tions (a total of 3273 lines) using low-density (~200 markers) and GBS
SNPs; (2) study the effects of marker density on prediction accuracy
by comparing the prediction accuracy obtained from low-density
SNPs with that obtained from GBS SNPs; (3) examine the impact of a
multienvironment model incorporating GE on prediction accuracy for
several traits with different levels of genetic architecture complexity
(GY, anthesis date (AD) and plant height (PH)) and evaluated under
different environmental conditions (that is, SS and WW environ-
ments). We also calculated the prediction accuracy of lines within a
biparental population that were not observed in any environment
versus those that were observed in some environments but not in
others under SS and WW conditions. Models incorporating GE and
non-GE were evaluated with low-density or GBS SNPs and both
simultaneously.

MATERIALS AND METHODS

Phenotypic data
This study comprised a total of 3273 lines derived from 19 crosses or
backcrosses between 23 elite maize inbred lines. Basic information regarding
these 19 biparental populations is provided in Table 1: 11 of the 19 are F2
families and the remaining 8 populations are BC1F2 families. The number of
lines in each population ranged from 126 to 184, with a mean of 172. All the
lines in each biparental cross were testcrossed to a single-cross tester from the
opposite heterotic group. Eleven populations were testcrossed with tester T1,
and the remaining eight populations were testcrossed with T2, the other tester.
Testcross progenies were evaluated for GY, AD and PH in four WW and three
to four SS environments in Kenya and Zimbabwe in 2010 and 2011. GY in SS
environments ranged from 0.2 to 4.2 t ha− 1, whereas GY in WW environments
varied from 4.8 to 9.0 t ha− 1.
In total, six trait–environment combinations (that is, GY_WW, AD_WW,

PH_WW, GY_SS, AD_SS and PH_SS) were considered in this study. The
experimental design in each environment was an α-lattice incomplete block
design with two replications, and data were balanced across the four WW and
three to four SS environments. Phenotypic data were preadjusted using
estimates of block and environmental effects derived from a linear model that
accounted for the incomplete block design within the environment and for
environmental effects. Combined trial analyses were performed within WW
and SS environments.
Traits with heritability below 0.05 in individual locations were not included

in the combined analysis. Broad-sense heritability of the combined analysis
across environments was calculated as h2 ¼ s2g=ðs2g þ s2ge=e þ s2e=erÞ, where
s2g , s

2
ge and s2e are the genotypic, genotype-by-environment interaction and

error variance components, respectively, and e and r are the number of
environments and of replicates within each environment included in the
corresponding analysis, respectively.

Genotypic data
All the lines in each biparental cross were genotyped with low-density SNPs
polymorphic between parents. Low-density SNPs were distributed evenly on 10
maize chromosomes, and the number of polymorphic SNPs in each population
ranged from 162 to 212, with a mean of 188 (Table 1). All the lines in each
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cross were genotyped by GBS SNPs as well. A GBS protocol commonly used by
the maize research community was applied in this study (Elshire et al., 2011).
The protocol was described in detail by Crossa et al. (2013a) and is briefly
described here. GBS libraries were constructed in 96-plex, and genomic DNA
was digested with the restriction enzyme ApeK1. Each library was sequenced on
a single lane of Illumina flow cell (Cornell Life Science Core Laboratory Center,
Ithaca, NY, USA). To increase the genome coverage and read depth for SNP
discovery, raw read data from the sequencing samples were analyzed together
with an additional 30 000 global maize collections. SNP identification was
performed using TASSEL 4.0 GBS Discovery Pipeline with B73 as the reference
genome. The source code and the TASSEL GBS discovery pipeline are available
at http://www.maizegenetics.net and the SourceForge Tassel project (http://
sourceforge.net/projects/tassel/). Initially, 955 690 SNPs evenly distributed on
maize chromosomes were identified for all the lines in each population, and
only high-quality SNPs with minor allele frequency 40.05 and o10% missing
values were used for prediction within each population after filtering

Statistical models
Recently Jarquín et al. (2014) proposed a class of random-effect models where
the main effects of markers, environments and their interactions are introduced
using covariance structures that are functions of marker genotypes and
environmental covariates. These models are extensions of the GBLUP models
for incorporating interaction between markers and environments into genomic
prediction.
In this study, the models developed by Jarquín et al. (2014) include low-

density or/and GBS SNPs in the 19 biparental maize populations. We
considered a sequence of models along the lines of those proposed by
Jarquín et al. (2014). A brief description of these models is given below.

Baseline main-effects model
The phenotypes (yij) are described as

yij ¼ mþ Ei þ Lj þ eij ð1Þ
where μ is the overall mean, Ei(i= 1,…,I) is the random effect of
the ith environment, Lj is the random effect of the jth line (j= 1,…,J)

and eij is a random error term. The standard assumptions of random
models are Ei∼

iid
Nð0; s2EÞ, Lj∼

iid
N 0; s2L
� �

and eij∼
iid
Nð0; s2e Þ, with

N(.,.) denoting a normal density; iid stands for independent and
identically distributed. In this baseline model, the random effects are
independent.

Main-effects model (G1 or G2)
As previously described in model (1), the random effect of the line can be
replaced by gj, which is the regression on marker covariates gj ¼

Pp
m¼1 xjmbm,

where xjm is the genotype of the jth line at the mth marker, and bm is the effect
of the mth marker with the assumption that bm∼

iid
Nð0;s2bÞ (m= 1,…,p) and s2b

is the variance of the marker effects. The vector g= (g1,…,gJ)′ contains the
genomic values of all the lines and is assumed to follow a multivariate normal
density with zero mean and covariance matrix Cov gð Þ ¼ Gs2g , where G is the
genomic relationship matrix and s2gps2b is the genomic variance. Therefore,
the equation

yij ¼ mþ Ei þ Lj þ gj þ eij ð2Þ

assuming Ei∼
iid
Nð0;s2EÞ, g∼Nð0;Gs2gÞ and eij∼

iid
Nð0;s2e Þ. The random-effects

g= (g1,…,gJ)′ are correlated such that model (2) allows borrowing of
information across lines. Therefore, model G1 is defined by setting G=G1,
where G1 is a genomic relationship matrix derived from the low-density
SNPs (see VanRaden, 2007,2008). Similarly, model G2 is obtained by
setting G=G2, where G2 is a genomic relationship matrix derived from
GBS data. The random effect of the lines and the random genomic effects are
both part of the total genetic value.

Main-effects and interaction models (G1E or G2E)
These random-effects models account for the effects of lines (L), of markers
(genomic effects) (g), of environments (E), of the interaction between lines and
environment (LE) and of the interaction between markers and environments
(Eg). These models are obtained by extending models G1 or G2 (2) to include
interaction effects (G1E or G2E). Predictions can be obtained with the

Table 1 Biparental testcross population parameters, number of lines and number of polymorphic low-density and GBS SNPs within 19 maize

biparental populations, and heritability of target trait–environment combinations (GY, AD and PH in WW and SS environments)

Pop. no. Pedigree Tester Pop. type N
a

N
b

N
c

Heritability

GY_WW GY_SS AD_WW AD_SS PH_WW PH_SS

1 P1×P2 T1 F2 165 201 62 776 0.31 0.32 0.56 0.53 0.82 0.31

2 P2×P3 T1 F2 162 188 56 891 0.22 0.18 0.54 0.40 0.69 0.69

3 P2×P4 T1 F2 126 183 55583 0.35 0.00 0.34 0.31 0.52 0.44

4 P2×P5 T1 F2 163 209 65 223 0.27 0.00 0.56 0.44 0.39 0.22

5 P4×P1 T1 F2 183 208 60 039 0.40 0.07 0.33 0.38 0.63 0.56

6 P6×P7 T1 F2 173 195 48 662 0.37 0.00 0.71 0.73 0.76 0.21

7 P8×P9 T1 F2 181 212 52 546 0.40 0.26 0.74 0.51 0.61 0.40

8 P8×P7 T1 F2 184 212 55 039 0.55 0.10 0.77 0.59 0.80 0.34

9 P10×P11 T1 F2 184 211 58 594 0.29 0.16 0.56 0.45 0.75 0.61

10 P12×P13 T1 F2 174 194 55 301 0.31 0.11 0.53 0.52 0.74 0.06

11 P14×P15 T2 BC1F2 184 170 54 208 0.11 0.01 0.60 0.50 0.81 0.37

12 P14×P16 T2 BC1F2 184 165 53 761 0.28 0.05 0.64 0.39 0.71 0.26

13 P17×P18 T2 BC1F2 184 185 70 728 0.45 0.35 0.64 0.34 0.75 0.52

14 P18×P19 T2 BC1F2 160 162 52 468 0.44 0.27 0.68 0.56 0.62 0.39

15 P19×P15 T2 BC1F2 178 176 49 126 0.00 0.38 0.61 0.41 0.66 0.02

16 P15×P5 T1 BC1F2 184 183 67 178 0.31 0.00 0.65 0.57 0.78 0.52

17 P20×P17 T2 F2 173 166 61 036 0.45 0.27 0.70 0.50 0.88 0.56

18 P21×P22 T2 BC1F2 176 172 78 005 0.00 0.21 0.72 0.55 0.79 0.57

19 P22×P23 T2 BC1F2 155 184 66 109 0.39 0.39 0.69 0.62 0.77 0.36

Avg 172 188 58 731 0.31 0.16 0.61 0.49 0.71 0.39

Abbreviations: AD, anthesis day; GBS, genotyping-by-sequencing; GY, grain yield; PH, plant height; SNP, single-nucleotide polymorphism; SS, water-stressed; WW, well-watered.
aNumber of lines in each biparental population.
bNumber of polymorphic low-density SNPs in each biparental population.
cNumber of polymorphic GBS high-density SNPs in each biparental population.

Genomic prediction in tropical maize
X Zhang et al

293

Heredity

http://www.maizegenetics.net


model:

yij ¼ mþ Ei þ Lj þ gj þ ELij þ Egij þ eij; ð3Þ
where ELij denotes the interaction of the ith line on the jth environment with
EL∼Nð0; ðZpIZp

0Þ1 ZEZE
0ð Þs2LEÞ, where Zp and ZE are the incidence matrices

for phenotypes and environments, respectively, s2LE is the variance component
of EL and ‘°’ stands for Hadamart product between two matrices. Also, Egij is
the interaction between the genetic value of the ith genotype in the jth
environment and Eg∼Nð0; ZgGZg

0� �
1 ZEZE

0ð Þs2EgÞ, where Zg is the incidence
matrix for the effects of the genetic values of the genotypes. Then, models G1E
and G2E are obtained by setting G=G1 and G=G2 for low-density and GBS
SNPs, respectively.

Main-effects and interaction models (G1E and G2E)
This model includes the effect of the line (L), the environment (E) and the
interaction between lines and environment. Interaction is built by simulta-
neously including the two sources of genomic information: G1E with SNPs and
G2E with GBS. The model is:

yij ¼ mþ Ei þ Lj þ g1j þ g2j þ ELij þ Eg1ij þ Eg2ij þ eij; ð4Þ
where g1∼Nð0; s2g1G1Þ, g2∼Nð0;s2g2G2Þ and similar to Eg in Equation (3), but
including both sources of genomic information Eg1∼Nð0; Zg1G1Zg1

0� �
1

ZEZE
0ð Þs2Eg1Þ and Eg2∼Nð0; Zg2G2Zg2

0� �
1 ZEZE

0ð Þs2Eg2Þ for low-density and
GBS SNPs, respectively.

Model implementation and cross-validation
To evaluate the impact of modeling the GE covariance structure for multi-
environment trials, two distinct cross-validation schemes were designed to
mimic two real situations that a breeder could potentially face (Burgueño et al.,
2012). The first cross-validation scheme (CV1) consists of evaluating the
predictive ability of models when new genotypes have not been evaluated in the
field in any environment. Predictions derived using CV1 are based entirely on
phenotypic records of other lines. The second cross-validation scheme (CV2)
consists of evaluating the predictive ability of models when some lines have
been evaluated in some environments but not in others. In CV2 prediction,
information from related lines and the correlated environments is used, and
prediction assessment can benefit from borrowing information between lines
within an environment, between lines across environments and among
correlated environments.
In both CV1 and CV2, a fivefold cross-validation scheme was used to

generate the training and validation sets and assess the prediction ability and
prediction accuracy within each population. For all trait–environment combi-
nations within each population, the data were randomly divided into five
subsets, with 80% of the lines assigned to the training set and 20% assigned to
the testing set. Four subsets were combined to form the training set, and the
remaining subset was used as the validation set. Permutation of five subsets led
to five possible training and validation data sets. This procedure was repeated
20 times, and a total of 100 runs were performed in each population for each
trait–environment combination. The average value of the correlations between
the phenotype and the genomic estimated breeding values from 100 runs was
calculated in each population for each trait–environment combination, and was
defined as the prediction ability (rMP). The prediction accuracy (rMG) was
estimated as the correlation between the true breeding value and the genomic
estimated breeding value, where rMG = rMP/h, and h is the square root of the
heritability of the target trait.

Software
All models were fitted in R (R-Core Team, 2014) using the BGLR package (de
los Campos and Pérez-Rodríguez, 2013) to implement the models described in
de los Campos et al. (2009).

RESULTS

Heritability of predicted traits
Broad-sense heritabilities of the trait–environment combinations were
low to moderate for GY in WW and SS environments, and they were
consistently higher under WW conditions than under SS conditions in

almost all populations (Table 1). Heritability of GY_WW had a mean
value of 0.31 and ranged from 0.11 to 0.55 across all 19 populations
except two, in which the GY_WW heritability was zero. Heritability of
GY_SS had a mean of 0.16 and ranged from 0.01 to 0.39 across all
populations except four, which had zero heritability.
Broad-sense heritabilities of AD and PH were relatively high under

WW conditions, ranging from 0.33 to 0.77, with a mean of 0.61 for
AD_WW, and from 0.39 to 0.88, with a mean of 0.71 for PH_WW in
all 19 populations. Broad-sense heritabilities of AD and PH were
moderate under SS conditions (Table 1); they ranged from 0.31 to
0.73, with a mean of 0.49 for AD_SS, and from 0.02 to 0.69, with a
mean of 0.39 for PH_SS in all 19 populations. Heritabilities of AD and
PH under WW conditions were consistently higher than those under
SS conditions across all populations.

GBS data
The initial imputed GBS data before filtering had 955 690 markers
evenly distributed on 10 maize chromosomes. The number of SNPs
per chromosome ranged from 148 752 on chromosome 1 to 67 216 on
chromosome 10. Across all populations, the missing proportion of
SNPs ranged from 13.91 to 21.32%, with a mean value of 17.49%, and
the heterozygosity proportion of SNPs ranged from 2.78 to 5.84%,
with a mean value of 4.52%. In 11 F2 populations, average percentages
of missing SNPs and heterozygous SNPs were 18.60% and 4.89%,
respectively, which were higher than those in eight BC1F2 popula-
tions. The average missing proportion was 15.97% and the average
heterozygosity proportion was 4.02% in all eight BC1F2 populations.
After filtering the GBS markers by applying two criteria (that is,

o10% missing values and a minor allele frequency 40.05), the
number of polymorphic SNPs in each population varied and ranged
from 48 662 to 78 005, with a mean value of 58 731. Naïve imputation
was performed in each population to impute all the missing SNPs.

Prediction accuracy in SS and WW environments within biparental
populations using low-density SNPs
Shown in Table 2 is the prediction accuracy obtained with CV1 and
CV2 for all target traits evaluated under WW conditions when low-
density SNPs were considered for prediction. In both cases (CV1 and
CV2), the rMG value of each population differed among all predicted
traits because of their heritability and genetic architecture. The rMG

values of GY_WW across all populations were consistently lower than
those of AD_WW and PH_WW. In CV1, the rMG values ranged from
0.10 to 0.54, with a mean of 0.27 for GY_WW, from 0.05 to 0.63, with
a mean of 0.31 for AD_WW, and from 0.20 to 0.68, with a mean of
0.44 for PH_WW. In CV2, these values ranged from 0.19 to 0.44, with
a mean of 0.34 for GY_WW, from 0.24 to 0.82, with a mean of 0.47
for AD_WW, and from 0.38 to 0.76, with a mean of 0.59 for
PH_WW. As expected, the average rMG values in CV1 were
consistently lower than those in CV2 for all target traits, that is,
predicting the performance of newly developed lines that have never
been evaluated in the field (CV1) is more challenging than predicting
the performance of lines that have been evaluated in different but
correlated environments (CV2).
Multienvironment models incorporating GE gave better prediction

accuracy than single-environment prediction models that ignored GE;
the increase in prediction accuracy because of incorporating GE was
clearer in complex traits (GY) than in less complex traits (AD and
PH). In CV1, the mean rMG value increased from 0.27 to 0.39 for GY,
from 0.33 to 0.35 for AD and from 0.44 to 0.45 for PH when GE was
incorporated into the multienvironment models. Similar trends were
found in CV2 but with higher accuracies than for CV1. In both CV1
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and CV2, the rMG value of GY_WW in population 11 exceeded 1.0
when model G1E was performed; this overestimation of the rMG value
was caused by sampling variation in both rMP and h2, because rMG was
estimated indirectly as rMP/h, where rMP is the correlation between
observed and predicted phenotypic values.
Table 3 shows rMG values obtained for all target traits evaluated

under SS environmental conditions, when low-density SNPs were
included in the prediction model. Results from Table 3 are similar to
those found in Table 2, but rMG values for all target traits under SS
conditions are consistently lower than under WW conditions because
of poor heritability estimation. The rMG values under SS conditions
were more often negative or above 1.0 than under WW conditions,
which indicates the importance of improving field evaluations under
stress conditions.

Prediction accuracy in SS and WW environments within biparental
populations using GBS SNPs
Shown in Table 4 is the prediction accuracy obtained for all target
traits evaluated in WW environments when GBS SNPs were included
in the prediction model. This shows that GBS SNPs outperformed the
prediction accuracy of low-density SNPs for complex trait prediction.
The average rMG values of GY_WW are higher than those in Table 2.
When high-density GBS SNPs instead of low-density SNPs were used
in the prediction model, average rMG values of GY_WW increased
from 0.27 to 0.33 in CV1 and from 0.34 to 0.37 in CV2 in non-GE
models. In GE models, rMG values increased from 0.39 to 0.43 in CV1
and from 0.48 to 0.49 in CV2. These results indicate that increasing
marker density improved the prediction accuracy of complex traits
(GY_WW and GY_SS).

When high-density GBS SNPs instead of low-density SNPs were
used in the prediction model, only slight increases in prediction
accuracy were found for less complex traits (AD_WW and PH_WW).
The rMG values of most populations in Table 4 are generally higher
than the corresponding values in Table 2, but as marker density
increases, there is either a slight increase or none at all in average rMG

values. Meanwhile, the rMG values in Table 4 are underestimated in
more populations whose prediction accuracies were close to zero or
negative.
Prediction accuracies obtained with GBS SNPs for all target traits

evaluated in SS environments are shown in Table 5. Compared with
prediction accuracies in Table 4, the corresponding values in Table 5
are lower; this was caused by poor heritability estimation in SS
environments. Increasing marker density improved the prediction
ability of both complex and simple traits evaluated in SS environ-
ments. The average rMG values in CV1 increased from 0.25 to 0.28 for
GY_SS, from 0.26 to 0.29 for AD_SS and from 0.27 to 0.34 for PH_SS
in non-GE models. In CV2, the average rMG values increased from
0.25 to 0.31 for GY_SS, from 0.37 to 0.38 for AD_SS and from 0.32 to
0.36 for PH_SS in non-GE models. Similar results were found in GE
models. High-density markers are required to achieve good prediction
accuracy for both simple and complex traits, if their estimated
heritability in stress environments is relatively low.

Prediction accuracy in SS and WW environments within
populations using both low-density and GBS SNPs
Average prediction accuracies obtained from the joint application of
low-density and GBS SNPs (models G1G2 and G1EG2E) in all the
models are shown in Figure 1 for all trait–environment combinations.
In non-GE models, average prediction accuracies obtained from the

Table 2 Prediction accuracy (rMG) of all target traits evaluated under well-watered conditions, when low-density SNPs were included in the

prediction model

Population no. Prediction accuracy in CV1 Prediction accuracy in CV2

GY_WW AD_WW PH_WW GY_WW AD_WW PH_WW

G1 G1E G1 G1E G1 G1E G1 G1E G1 G1E G1 G1E

1 0.17 0.26 0.05 0.01 0.49 0.51 0.35 0.45 0.24 0.21 0.67 0.69

2 0.10 0.17 0.27 0.25 — — 0.28 0.33 0.43 0.45 — —

3 0.16 0.27 0.63 0.64 0.40 0.39 0.33 0.82 0.85 0.55 0.55

4 0.20 0.23 0.24 0.23 0.41 0.41 0.42 0.47 0.50 0.51 0.76 0.77

5 0.39 0.41 0.11 0.26 0.47 0.46 0.38 0.45 0.24 0.28 0.56 0.55

6 0.12 0.13 0.30 0.30 0.36 0.39 0.19 0.19 0.47 0.47 0.56 0.58

7 0.21 0.23 0.38 0.37 0.25 0.24 0.35 0.38 0.50 0.50 0.38 0.37

8 0.36 0.36 0.24 0.23 0.48 0.48 0.37 0.40 0.38 0.34 0.59 0.60

9 0.18 0.39 0.39 0.42 0.46 0.48 0.24 0.38 0.50 0.52 0.62 0.64

10 0.19 0.21 0.30 0.26 0.35 0.37 0.29 0.32 0.48 0.47 0.59 0.61

11 0.54 1.46 0.41 0.43 0.52 0.54 0.35 1.42 0.51 0.52 0.61 0.62

12 0.43 0.58 0.45 0.44 0.45 0.45 0.35 0.56 0.53 0.54 0.52 0.53

13 0.38 0.43 0.44 0.45 0.52 0.57 0.40 0.49 0.55 0.56 0.58 0.64

14 0.16 0.24 0.21 0.25 0.20 0.23 0.32 0.37 0.36 0.37 0.42 0.43

15 — — 0.37 0.39 0.34 0.33 — — 0.42 0.45 0.47 0.47

16 0.28 0.43 0.35 0.40 0.53 0.55 0.25 0.37 0.45 0.50 0.65 0.66

17 0.31 0.40 0.43 0.45 0.59 0.60 0.44 0.56 0.54 0.53 0.75 0.76

18 — — 0.51 0.54 0.68 0.69 — — 0.60 0.63 0.73 0.74

19 0.38 0.45 0.26 0.27 0.48 0.46 0.44 0.56 0.51 0.52 0.59 0.59

Average 0.27 0.39 0.33 0.35 0.44 0.45 0.34 0.48 0.47 0.49 0.59 0.60

Abbreviations: CV, cross-validation scheme; SNP, single-nucleotide polymorphism.
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Table 3 Prediction accuracy (rMG) of all target traits evaluated under water-stressed conditions, when low-density SNPs were included in the

prediction model

Population no. Prediction accuracy in CV1 Prediction accuracy in CV2

GY_SS AD_SS PH_SS GY_SS AD_SS PH_SS

G1 G1E G1 G1E G1 G1E G1 G1E G1 G1E G1 G1E

1 0.23 0.16 0.29 0.30 0.37 0.38 0.34 0.32 0.34 0.34 0.56 0.58

2 0.14 0.23 0.31 0.31 — — 0.00 −0.04 0.38 0.39 — —

3 — — 0.27 0.23 0.11 0.03 — — 0.49 0.49 0.16 0.11

4 — — 0.27 0.33 0.11 0.20 — — 0.38 0.40 0.07 0.15

5 0.29 0.46 0.23 0.22 0.00 0.00 0.05 0.15 0.32 0.34 — —

6 — — 0.27 0.27 0.13 0.28 — — 0.53 0.53 0.21 0.32

7 0.02 0.19 0.25 0.25 −0.05 0.02 0.14 0.24 0.39 0.38 0.19 0.21

8 0.13 0.01 0.23 0.20 0.02 0.01 0.26 0.29 0.37 0.37 0.24 0.25

9 0.37 0.41 0.05 0.03 0.20 0.30 0.38 0.45 0.11 0.09 0.28 0.34

10 0.41 0.58 0.24 0.22 0.48 0.67 0.26 0.48 0.40 0.37 0.42 0.69

11 1.00 1.10 0.38 0.40 0.50 0.50 0.52 0.95 0.43 0.44 0.36 0.39

12 0.69 0.92 0.51 0.51 0.51 0.50 0.41 0.72 0.50 0.55 0.42 0.43

13 0.17 0.36 0.07 0.02 0.38 0.38 0.16 0.39 0.07 0.06 0.41 0.43

14 −0.27 −0.16 −0.05 −0.03 0.11 0.06 0.18 0.09 0.02 0.03 0.10 0.02

15 0.01 0.06 0.31 0.27 0.33 −0.06 0.23 0.24 0.41 0.46 0.01 −0.15

16 — — 0.33 0.35 0.41 0.45 — — 0.40 0.45 0.47 0.50

17 0.10 0.23 0.34 0.36 0.38 0.39 0.20 0.30 0.46 0.48 0.51 0.53

18 0.29 0.51 0.46 0.51 0.52 0.53 0.32 0.55 0.53 0.56 0.56 0.57

19 0.10 0.16 0.31 0.31 0.42 0.46 0.30 0.33 0.46 0.45 0.42 0.46

Average 0.25 0.35 0.26 0.27 0.27 0.28 0.25 0.36 0.37 0.38 0.32 0.34

Abbreviations: CV, cross-validation scheme; SNP, single-nucleotide polymorphism.

Table 4 Prediction accuracy (rMG) of all target traits evaluated under well-watered conditions, when high-density GBS markers were included in

the prediction model

Population no. Prediction accuracy in CV1 Prediction accuracy in CV2

GY_WW AD_WW PH_WW GY_WW AD_WW PH_WW

G2 G2E G2 G2E G2 G2E G2 G2E G2 G2E G2 G2E

1 0.38 0.47 0.15 0.16 0.62 0.64 0.42 0.58 0.26 0.27 0.70 0.72

2 0.41 0.48 0.37 0.39 — — 0.38 0.45 0.46 0.49 — —

3 0.22 0.28 0.65 0.63 0.55 0.55 0.34 0.35 0.83 0.83 0.60 0.59

4 0.48 0.48 0.39 0.39 0.48 0.47 0.50 0.53 0.52 0.52 0.78 0.76

5 0.43 0.46 0.20 0.24 0.56 0.56 0.42 0.47 0.25 0.26 0.60 0.59

6 0.29 0.33 0.43 0.45 0.50 0.53 0.29 0.39 0.51 0.53 0.59 0.62

7 0.22 0.25 0.51 0.50 0.34 0.33 0.35 0.41 0.55 0.55 0.40 0.38

8 0.42 0.45 0.34 0.32 0.45 0.46 0.43 0.46 0.41 0.37 0.59 0.61

9 0.27 0.42 0.52 0.53 0.58 0.59 0.27 0.43 0.56 0.59 0.66 0.67

10 0.32 0.43 0.39 0.37 0.55 0.58 0.32 0.41 0.51 0.50 0.62 0.62

11 0.60 1.38 0.41 0.42 0.56 0.57 0.39 1.34 0.51 0.52 0.62 0.63

12 0.03 0.13 −0.09 −0.05 −0.08 −0.12 0.21 0.25 0.45 0.45 0.47 0.44

13 0.38 0.42 0.47 0.48 0.59 0.64 0.41 0.46 0.57 0.59 0.61 0.65

14 0.28 0.38 0.20 0.22 0.22 0.23 0.32 0.38 0.36 0.35 0.42 0.42

15 — — 0.09 0.10 0.01 0.02 — — 0.39 0.39 0.45 0.43

16 0.24 0.27 0.36 0.38 0.54 0.56 0.29 0.31 0.46 0.49 0.66 0.67

17 0.42 0.50 0.49 0.51 0.72 0.75 0.49 0.59 0.56 0.58 0.77 0.80

18 — — 0.47 0.48 0.61 0.61 — — 0.59 0.61 0.72 0.73

19 0.17 0.25 0.04 0.02 0.19 0.17 0.38 0.43 0.50 0.49 0.56 0.55

Average 0.33 0.43 0.34 0.34 0.45 0.45 0.37 0.49 0.49 0.49 0.60 0.60

Abbreviations: CV, cross-validation scheme; SNP, single-nucleotide polymorphism.
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joint application of low-density and GBS SNPs (model G1G2) were
similar or a little higher than the corresponding rMG values obtained
using only GBS SNPs (model G2) for all trait–environment combina-
tions. However, the differences between models G2 and G1G2 became
obvious for all trait–environment combinations in GE models,
especially for GY. These results clearly indicate the benefits of
incorporating GE into the genomic models when using only
low-density SNPs (G1E), only GBS SNPs (G2E) or both together
(G1EG2E), especially for complex traits such as GY under SS and WW
environments.

DISCUSSION

In maize breeding, one of the most promising applications of genomic
selection is to predict the performance of unphenotyped lines within
biparental populations, where the training and validation sets are
derived from the same cross. Owing to the close relationship between
the training and validation sets and the strong linkage disequilibrium
between quantitative trait loci and markers in biparental populations,
moderate-to-high accuracies of genomic prediction for various traits
could be obtained using low marker density and a small population
size (Windhausen et al., 2012). In this study, 19 biparental tropical

Table 5 Prediction accuracy (rMG) of all target traits evaluated under water-stressed conditions, when high-density GBS markers were included

in the prediction model

Population no. Prediction accuracy in CV1 Prediction accuracy in CV2

GY_SS AD_SS PH_SS GY_SS AD_SS PH_SS

G2 G2E G2 G2E G2 G2E G2 G2E G2 G2E G2 G2E

1 0.25 0.23 0.32 0.35 0.69 0.70 0.37 0.37 0.37 0.39 0.68 0.72

2 0.31 0.38 0.28 0.29 — — 0.15 0.18 0.39 0.38 — —

3 — — 0.27 0.28 0.02 −0.02 — — 0.52 0.52 0.16 0.15

4 — — 0.33 0.37 0.28 0.25 — — 0.41 0.40 0.16 0.17

5 0.37 0.61 0.32 0.32 0.00 0.00 0.18 0.45 0.36 0.36 — —

6 — — 0.41 0.40 0.24 0.31 — — 0.58 0.57 0.31 0.41

7 0.20 0.29 0.37 0.39 0.05 0.08 0.17 0.27 0.45 0.46 0.19 0.17

8 0.20 0.18 0.39 0.39 0.12 0.08 0.35 0.39 0.43 0.44 0.29 0.23

9 0.35 0.46 0.09 0.10 0.41 0.45 0.42 0.60 0.12 0.12 0.38 0.42

10 0.49 0.58 0.40 0.42 0.74 0.93 0.44 0.64 0.47 0.46 0.56 0.88

11 1.03 1.14 0.41 0.43 0.48 0.50 0.72 1.11 0.46 0.48 0.39 0.41

12 0.35 0.07 0.13 0.09 −0.04 −0.07 0.40 0.20 0.38 0.33 0.25 0.22

13 0.21 0.33 0.07 0.03 0.45 0.45 0.18 0.34 0.09 0.09 0.44 0.46

14 −0.21 −0.08 −0.02 −0.01 0.10 0.03 0.19 0.16 0.02 0.02 0.12 0.02

15 0.08 0.05 0.18 0.21 1.00 0.92 0.23 0.21 0.38 0.37 0.22 0.43

16 — — 0.37 0.39 0.35 0.38 — — 0.42 0.45 0.46 0.49

17 0.26 0.29 0.51 0.57 0.42 0.45 0.26 0.27 0.51 0.53 0.53 0.56

18 0.30 0.37 0.37 0.44 0.48 0.48 0.31 0.43 0.50 0.53 0.55 0.54

19 0.10 0.13 0.21 0.17 0.27 0.36 0.27 0.28 0.44 0.42 0.36 0.45

Average 0.28 0.33 0.29 0.30 0.34 0.35 0.31 0.39 0.38 0.38 0.36 0.40

Abbreviations: CV, cross-validation scheme; SNP, single-nucleotide polymorphism.
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Figure 1 Average prediction accuracy in CV1 and CV2 for all trait–environment combinations in all prediction models.

Genomic prediction in tropical maize
X Zhang et al

297

Heredity



maize populations were used to assess the effects of marker density,
trait heritability, trait genetic architecture, trait–environment combi-
nation, and non-GE and GE modeling on prediction accuracy. We
found that, compared with low-density SNPs (~200 markers), GBS
improved prediction ability; heritability and the genetic architecture of
target traits can also affect the prediction ability in both GE and non-
GE models. Prediction of all target traits under stress conditions was
lower than under WW conditions, and multienvironment models
incorporating GE gave better prediction accuracy in most cases,
especially for complex traits such as GY.
Increasing marker density was previously found to be an important

factor for improving prediction accuracy, but some studies have
indicated that the rMG value in biparental maize populations is at or
near maximum when target trait heritability is relatively high and the
genome is covered with sufficient markers, that is, when the mean
distance between markers is o10–20 cM or around 150 markers
evenly cover the whole genome (Lorenzana and Bernardo, 2009; Lian
et al., 2014). In this study, we found that high-density GBS SNPs did
not increase the rMG values of simple traits (AD and PH) evaluated
under WW conditions (AD_WW and PH_WW) as compared with
low-density SNPs (~200 markers). This indicated that ~ 200 markers
are usually sufficient to achieve good prediction in biparental maize
populations for simple traits with moderate-to-high heritability.
However, prediction accuracies obtained from GBS outperformed
those obtained from low-density SNPs, when predicting complex traits
in SS and WW environments (GY_WW and GY_SS) or simple traits
(AD_SS and PH_SS) with low-to-moderate heritability evaluated
under stress conditions. These results indicate that heritability and
the genetic architecture of target traits affect prediction ability in
biparental populations, and that high-density markers (GBS) are still
required to obtain good prediction accuracy for both simple and
complex traits, if their heritabilities are low under stress conditions.
This is the first report to compare prediction accuracies obtained from
GBS with those obtained from single-plex SNP assays having similar
costs in plant breeding. In this study, GBS is shown to be a
competitive alternative for economically increasing by many-fold the
number of markers used and for improving prediction
accuracy. However, GBS data always come with a large percentage
of uncalled genotypes and a lower heterozygosity proportion than
expected when highly heterozygous breeding materials or populations
are genotyped with GBS. Preliminary results of this study indicated
that the average rMG values in 8 BC1F2 populations were consistently
higher than those in 11 F2 populations when GBS markers were
included in the prediction. This may be caused by the greater
difference between the real heterozygosity proportion and the
expected value in F2 populations. How imputation of missing and
heterozygous genotypic data can affect prediction accuracies when
GBS data are used in genomic prediction needs to be investigated in
future research.
Genotype× environment interaction in maize is usually strong for

complex quantitative traits, and maize hybrids are always tested in
multiple environments. However, most of the current genomic
prediction studies have only applied a single-environment model
and have not considered predictive models having correlated environ-
mental structures (Guo et al., 2013). Burgueño et al. (2012) were the
first to include GE in the GBLUP model using markers and pedigree,
whereas Jarquín et al. (2014) developed the models used in this study,
which incorporate random structures of highly dimensional environ-
mental and marker information. In this study, the impact of modeling
GE variance structures for multienvironment trials was investigated,
and our results indicate that the mean rMG values derived from GE

models were higher than the corresponding values from non-GE
models across all cross-validations, marker densities and trait–
environment combinations, especially for complex traits.
Across all populations, the differences between GE models and non-

GE models were important and consistent for GY_WW and GY_SS.
However, as expected, the superiority of the GE model was small for
less complex traits (AD and PH), and the rMG values were more
frequently underestimated (below zero) or overestimated (above 1.0)
with the GE models than with the non-GE models, especially when
target traits were evaluated under SS conditions or high-density GBS
markers were used for prediction. Besides sampling variation in both
rMP and h2, underestimated and overestimated rMG values may be
caused by collinearity between high-density markers and linkage
disequilibrium between quantitative trait loci and SNPs that were
not stable across environments. Results of this study expand the
conclusions reported by Burgueño et al. (2012) and Jarquín et al.
(2014) that modeling GE gives better prediction accuracy than
prediction models ignoring GE in wheat multienvironments trials.
Our results indicate that multienvironment genomic prediction
models, rather than simple-environment models, should be included
in future research on complex traits. Results of this study also showed,
as expected, that rMG values in CV1 were consistently lower than the
values in CV2 across all populations, marker densities and trait–
environment combinations, which indicates that predicting the
performance of newly developed lines that have never been evaluated
in the field (CV1) is more challenging than predicting the perfor-
mance of lines that have been evaluated in different but correlated
environments (CV2).
Genomic prediction could also be improved by pooling multiple

related biparental populations into the training set (Schulz-Streeckab
et al., 2012). However, this study only focused on the prediction
accuracy within each biparental maize population, and further
research is needed to assess prediction accuracy across multiple
biparental populations, both related and unrelated.

CONCLUSIONS

This study, comprising 19 biparental maize populations evaluated in
several SS and WW environments and genotyped with low-density
and GBS SNPs, had several objectives. The first objective was to
compare the prediction accuracy under SS and WW environmental
conditions of three traits with different complexity (GY, AD and PH)
using low- and high-density SNPs with models that incorporate GE
and non-GE. Another objective was to examine prediction accuracy
when lines in one biparental population had not been observed in any
environment (CV1) and when some of them had been observed in
some environments but not in others (CV2).
In general, results within each biparental population are clear. First,

as expected, predictions were higher in WW environments than in SS
environments. Second, results indicated important increases in pre-
diction accuracy when using GBS over low-density SNPs for a
complex trait (GY) but not much of an increase for simpler traits
such as AD and PH.
In models that incorporate low-density SNPs and GBS SNPs and

their interaction with the environment (G1E or G2E), results for
complex traits clearly showed the higher prediction accuracy of G1E
or G2E as compared with models including only the main effects
(G1 or G2) for both prediction cases (CV1 and CV2). This increase in
prediction accuracy achieved using models with GE occurred for less
complex traits such as AD and PH, but to a lesser degree than that
observed for GY. Results of this study agree with those already
reported by Burgueño et al. (2012), as well as with the results of the
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highly dimensional model proposed by Jarquín et al. (2014) in wheat,
which suggested that the inclusion of the random-effects environment
structure of GE allows exploiting information from correlated
environments. This produces an increase in the prediction accuracy
of the GBLUP model by borrowing information not only from related
lines expressed in the genomic relationship matrix but also from
related environmental conditions that in turn modulate gene effects
differently.
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