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ABSTRACT 

Despite being one of the most consumed vegetables in the United States, the elemental profile of 

sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic 

improvement, a genome-wide association study was conducted for the concentrations of 15 

elements in fresh kernels of a sweet corn association panel. In concordance with mapping results 

from mature maize kernels, we detected a probable pleiotropic association of zinc and iron 

concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme 

involved in synthesis of the metal chelator nicotianamine. Additionally, a pervasive association 

signal was identified for cadmium concentration within a recombination suppressed region on 

chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), 

whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in 

roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our 

association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. 

This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. 

Although less resolved association signals were detected for boron, nickel, and calcium, all 15 

elements were shown to have moderate predictive abilities via whole-genome prediction. 

Collectively, these results help enhance our genomics-assisted breeding efforts centered on 

improving the elemental profile of fresh sweet corn kernels. 

Keywords: genome-wide association study, whole-genome prediction, elements, kernels, sweet 

corn  
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INTRODUCTION 

As with all multicellular organisms, the concentration and distribution of elements in tissues and 

organs influence growth and development over the plant life cycle. At least 16 elements  

(boron, calcium, carbon, chlorine, copper, hydrogen, iron, magnesium, manganese, 

molybdenum, nitrogen, oxygen, phosphorus, potassium, sulfur, and zinc) are considered essential 

for higher plant species, with an additional four elements (cobalt, silicon, nickel, and sodium) 

essential for a subset of higher plants (Mengel and Kirkby 2001). In plants, the need for and 

concentration of macroelements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur, 

potassium, calcium, magnesium) (Hawkesford et al. 2012) are relatively greater than for 

microelements (iron, manganese, copper, zinc, nickel, molybdenum, boron, chlorine, and cobalt) 

(Broadley et al. 2012). Additionally, nonessential heavy metals such as cadmium, chromium, 

and lead that lack involvement in normal physiological functions can accumulate to toxic 

concentrations in plants, penetrating the food chain and posing a threat to human health (Singh et 

al. 2016). 

Not unlike plants, humans can suffer a range of adverse health effects from the excess or 

deficiency of essential and nonessential elements. Of all the micronutrients, deficiency is most 

prevalent for iron, with more than two billion people affected worldwide (Viteri 1998). Of 

similar scale, nearly two billion people are estimated to suffer from dietary zinc deficiency 

throughout developing nations (Prasad 2014). Given that metal chelating substances such as 

phytate in cereal grains bind zinc and iron and inhibit their absorption, zinc and iron deficiencies 

resulting from low bioavailability could coincide (Sandstead and Smith 1996; Lönnerdal 2000). 

Although severe dietary micronutrient deficiency is far less prevalent in developed nations, 

approximately 10 million people are iron deficient in the U.S. (Miller 2013). In the U.S., the 
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average daily intake of iron by most premenopausal (12 mg d-1) and pregnant (15 mg d-1) women 

is 6 and 12 mg d-1 less than its recommended daily allowance (RDA), respectively (Institute of 

Medicine 2001; Linus Pauling Institute 2016). Additionally, the zinc RDA for adult women and 

men is 11 mg d-1 and 8 mg d-1, with elderly in the U.S. at higher risk for mild zinc deficiency 

(Mocchegiani et al. 2013; Linus Pauling Institute 2019). 

Crop biofortification via genomics-assisted breeding and genetic engineering has 

emerged as an attractive approach for nutritional enhancement of crops and the generation of 

new varieties with a high density of iron and zinc in edible plant tissues (Murgia et al. 2012; 

Bhullar and Gruissem 2013; Hirschi 2020). It is increasingly recognized that plant membrane 

transporters and metal chelators are among the key targets for increasing mineral nutrient density 

in plant tissues (Waters and Sankaran 2011; Schroeder et al. 2013). However, in many cases, 

transporters that facilitate the accumulation of iron and zinc are multispecific and can mediate 

the uptake and internal transport of nonessential and potentially highly toxic heavy metals 

including cadmium (Waters and Sankaran 2011; Schroeder et al. 2013; Khan et al. 2014). 

Therefore, efforts to increase the concentration of iron and zinc in grains of cereals could also 

increase the concentration of cadmium. This poses a serious threat to food security, especially if 

crops are grown on soils either contaminated with cadmium or low in microelements, 

particularly iron (Waters and Sankaran 2011; Schroeder et al. 2013; Khan et al. 2014). 

Vegetative and seed tissues of fruits and vegetables are important dietary sources of 

essential and nonessential elements for humans to meet their daily nutrient needs. Given that 

sweet corn is the third most consumed vegetable in the U.S. (USDA-NASS 2018), the elemental 

profile of fresh sweet corn kernels is an important consideration for human health and nutrition. 

Although not a major contribution to the RDA of iron and zinc, the consumption of 100 g of 
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uncooked, yellow sweet corn (medium-sized ear) provides 0.52 mg of iron and 0.46 mg of zinc 

(USDA-ARS 2019), but the bioavailable amount is expected to be no more than a quarter of the 

total of each element (Bouis and Welch 2010). Therefore, there exists a tremendous opportunity 

to improve the elemental profile of fresh sweet corn kernels through genomics-assisted breeding, 

but this first requires an understanding of the phenotypic variability and genetic control of zinc, 

iron, and other elements. Considerable heritable variation exists for elemental concentrations in 

physiologically mature grain of diverse maize panels (Ziegler et al. 2017; Wu et al. 2021), but a 

comparable level of genetic understanding is severely lacking for immature kernels (fresh-eating 

stage) of diverse sweet corn germplasm. 

Complex physiological and genetic networks coordinate elemental uptake, transport, and 

accumulation in plants, and these processes are responsive to the environment in which plants 

are grown (Reviewed in Baxter 2009). In the genomes of Arabidopsis, maize, rice, and other 

plant species, gene families have been identified for metal transporters and chelators including 

but not limited to HEAVY-METAL ATPASE (HMA), OLIGOPEPTIDE TRANSPORTERS 

(OPTs) and their subfamily of YELLOW STRIPE-LIKE (YSL), ZINC-REGULATED 

TRANSPORTER (ZRT)/IRON-REGULATED TRANSPORTER (IRT)-LIKE PROTEIN (ZIP) 

and NICOTIANAMINE SYNTHASE (NAS) (Whitt et al. 2020). As it relates to maize, yellow 

stripe1 (ys1) and ys3 encode proteins that have been functionally shown to transport iron when 

associated with a strong metal-ligand, nicotianamine— synthesized from S-adenosyl-methionine 

by NAS enzymes—or its derivative phytosiderophores such as mugineic acid and deoxymugenic 

acid (Von Wiren et al. 1994; Chan-Rodriguez and Walker 2018), whereas the proteins encoded 

by ysl2 and zip5 have been functionally implicated in the accumulation of zinc and iron in grain 

(Li et al. 2019; Zang et al. 2020). Despite these advancements, the vast majority of metal 
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transporters and chelators in the maize genome have not been deeply characterized at the 

functional level, thus a wide gap in the knowledge base remains for the key gene family 

members controlling the content and composition of elements in maize tissues and organs. 

Explaining and predicting the quantitative variation of phenotypes is a major challenge in 

crop plants, but there has been notable recent progress for maize grain elemental phenotypes 

(Ziegler et al. 2017; Hindu et al. 2018; Wu et al. 2021). In the U.S. maize nested association 

mapping (NAM) panel, joint-linkage analysis and genome-wide association studies (GWAS) 

were used to identify six strong candidate genes for the concentrations of manganese, 

molybdenum, phosphorus, or rubidium in physiologically mature grain (Ziegler et al. 2017). 

Through the implementation of GWAS in the maize Ames panel, Wu et al. (2021) resolved 

several loci previously identified to control variation for copper, iron, manganese, molybdenum, 

and/or zinc in mature grain from the U.S. NAM panel, which resulted in the identification of two 

metal chelator and five metal transporter candidate genes. Additionally, the authors detected 

novel candidate gene loci for boron and nickel grain concentrations. Whole-genome prediction 

(WGP) models have been found to be moderately predictive of elemental concentrations in 

mature grain of tropical maize populations (zinc) (Guo et al. 2020; Mageto et al. 2020) and the 

Ames panel (boron, calcium, copper, iron, potassium, magnesium, manganese, molybdenum, 

nickel, phosphorus, and zinc) (Wu et al. 2021). Notwithstanding this progress with mature grain, 

the genotype-phenotype map of elemental concentrations in fresh sweet corn kernels is 

completely nonexistent, thus there exists tremendous opportunities for studying the quantitative 

genetics of these nutritionally relevant phenotypes. 

In this study, we used a sweet corn association panel for the genetic dissection and 

prediction of quantitative variation of 15 elements in fresh sweet corn kernels. The three major 
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objectives of our study were to (i) evaluate variability and heritability of elemental fresh kernel 

phenotypes within and across field locations, (ii) employ GWAS to identify candidate genes 

associated with the levels of elements in fresh kernels, and (iii) assess the predictive abilities of 

WGP models as an evaluation of the potential that genomic selection has for the genetic 

improvement of elemental fresh kernel phenotypes important to human nutrition and health. 

MATERIALS AND METHODS 

Plant Materials and Experimental Design 

In two consecutive field seasons (2014-15), a sweet corn association panel of 430 inbred lines 

representing the genetic diversity of temperate U.S. breeding programs (Baseggio et al. 2019) 

was evaluated at Cornell University’s Musgrave Research Farm in Aurora, NY, on a Lima silt 

loam (fine-loamy, mixed, semiactive, mesic Oxyaquic Hapludalfs) and University of 

Wisconsin’s West Madison Research Station in Verona, WI, on a Plano silt loam (fine-silty, 

mixed, superactive, mesic Typic Argiudolls). The panel consists of sugary1 (su1), 

sugary1:sugary enhancer1 (su1se1), shrunken2 (sh2), sugary1:shrunken2 (su1sh2), brittle2 

(bt2), and amylose-extender:dull:waxy (aeduwx) lines that are homozygous for endosperm 

mutations that cause deficiences in starch biosynthesis. Additionally, there were 20 non-sweet 

corn inbred lines and four repeated check sweet corn inbred lines included in the experiment. In 

each of the four environments (location × year combination), the experiment was arranged as an 

augmented incomplete block design grown as a single replicate as previously described by 

Baseggio et al. (2019). Briefly, the lines were separated into three sets according to their plant 

height, with each set having incomplete blocks. Each incomplete block of 20 experimental lines 

was augmented with the random placement of two height-specific check lines (We05407 and 

W5579, W5579 and Ia5125, or Ia5125 and IL125b). In both field locations, experimental units 
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were one-row plots of different lengths. Plots were 3.05 m long in NY and 3.50 m long in WI. 

Both locations had an inter-row spacing of 0.76 m, with a 0.91 m alley at the end of each plot. In 

NY, 25 kernels were planted per plot and thinned to 12 plants per plot. In WI, 12 kernels were 

planted in each plot, but plots were not thinned. 

In all environments, multiple plants per plot were selfed pollinated, with two selfed ears 

collected by hand from each harvestable plot at 400 growing degree days after pollination (i.e., 

immature kernel stage at approximately 21 days after pollination) as earlier described (Baseggio 

et al. 2019). Immediately upon fresh harvest, the entirety of each dehusked ear was directly 

frozen in liquid nitrogen, followed by hand shelling of frozen kernels. To generate a 

representative composite kernel sample for each harvested plot, frozen kernels were equally 

sampled at random from both ears, bulked, and stored in 15 mL Falcon tubes at -80°C until 

lyophilization. A combined set of 1,524 plot samples from across all environments, with each 

sample consisting of three lyophilized kernels, was shipped to the Donald Danforth Plant Science 

Center (St. Louis, MO) for elemental analysis. 

Phenotypic Data Analysis 

For each plot sample, the determination of elemental concentration by an inductively coupled 

plasma mass spectrometer (ICP-MS) was conducted separately for each of the three lyophilized 

kernels as previously described in Baxter et al. (2014). In short, each individual unground kernel 

was robotically weighed, digested in concentrated nitric acid, and measured for concentrations of 

aluminum, arsenic, boron, cadmium, calcium, cobalt, copper, iron, magnesium, manganese, 

molybdenum, nickel, phosphorus, potassium, rubidium, selenium, sodium, strontium, sulfur, and 

zinc with a PerkinElmer NexION 350D ICP-MS. Of these 20 elements, aluminum, arsenic, 

cobalt, selenium, and sodium were not further considered because their measured concentrations 
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were at trace levels, vulnerable to contamination in the course of sample processing, and/or 

sensitive to interference from other sample matrix constituents (Ziegler et al. 2013). To limit the 

influence of extreme analytical outliers that could negatively affect the accurate estimation of 

variance components when initially fitting a mixed linear model to the raw data, the method of 

Davies and Gather (1993) was implemented similarly to its use in Baxter et al. (2014) to remove 

raw concentration values with greater than a conservative threshold of 15 median absolute 

deviations from the median concentration for a given element within each environment. If less 

than 1% of the values for a given element were negative, these negative values were set to 

missing. 

The preliminarily processed raw ICP-MS dataset was more robustly screened for 

significant outliers by fitting a mixed linear model that allowed for genetic effects to be 

separately estimated from field design effects, following the procedure described in Wolfinger et 

al. (1997). The fitted mixed linear model was similar to that used by Baseggio et al. (2019) for 

the same experimental field design, with the notable exception that the model used in this study 

included a term to estimate within-plot kernel sample variance. This allowed for the removal of 

individual outlier measurements. For each elemental phenotype, the full model was fitted in 

ASReml-R version 3.0 (Gilmour et al. 2009) across locations (all four environments) or for each 

location separately (two environments, NY; or two environments, WI) as follows: 

���������	 � � � ������ � �	
� � ���
�	
��� � �����
��� �  �	
���� � ��	������ �


��	����� �  �	
��� � ���. ��	� � ������� � ���
�	
��� � ���
�	
��	 �  ��������	  [1] 

in which Yijklmnopq is an individual phenotypic observation, μ is the grand mean, checki is the fixed 

effect for the ith check, envj is the effect of the jth environment, set(env)jk is the effect of the kth 

set within the jth environment, block(set × env)jkl is the effect of the lth incomplete block within 
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the kth set within the jth environment, genotypem is the effect of the mth experimental genotype 

(non-check line), (genotype × env)jm is the effect of the interaction between the mth genotype and 

jth environment, ICP.runn is the laboratory effect of the nth ICP run, sampleo is the oth kernel 

sample, row(env)jp is the effect of the pth plot grid row within the jth environment, col(env)jq is 

the effect of the qth plot grid column within the jth environment, and εijklmnopq is the 

heterogeneous residual error effect within each environment with a first order autoregressive 

correlation structure among plot residuals in the row and column directions. With the exception 

of the grand mean and check term, all terms were modeled as random effects. The Kenward-

Roger approximation (Kenward and Roger 1997) was used to calculate degrees of freedom. 

Studentized deleted residuals (Neter et al. 1996) obtained from these mixed linear models were 

used to detect significant outliers for each phenotype after a Bonferroni correction (α = 0.05).  

To generate best linear unbiased predictor (BLUP) values for each elemental phenotype, 

an iterative mixed linear model fitting procedure was conducted on the outlier-screened 

phenotypic dataset in ASReml-R version 3.0 (Gilmour et al. 2009) with the full model across 

locations or for each location separately. Model terms fitted as random effects including the 

autoregressive correlations were tested with likelihood ratio tests (Littell et al. 2006), followed 

by the removal of terms from the model that were not significant at α = 0.05. The significance of 

main random effects and variance component estimates are reported in Table S1. Additionally, 

the first order autoregressive correlation structure was statistically significant for all phenotypes. 

For each elemental phenotype, the final, best fitted model was used to generate a BLUP for each 

inbred line. The generated BLUP values were filtered to remove non-sweet corn lines, as well as 

sweet corn lines with the infrequent aeduwx or bt2 endosperm mutations and those without 

available SNP marker data. This resulted in 401 sweet corn lines with more prevalent endosperm 
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mutations [su1, su1se1 (classified as su1 for this study due to lack of informative marker 

genotypes), sh2, and su1sh2] that had BLUP values for elemental phenotypes across and within 

locations. 

With variance component estimates from each best fitted model, heritability on a line-

mean basis was calculated for each elemental phenotype across locations and separately for each 

location as previously described (Lynch and Walsh 1998; Holland et al. 2003; Hung et al. 2012). 

Pearson’s correlation coefficient (r) was used to assess the degree of association between the 

BLUP values of paired phenotypes. Pairwise correlations were calculated, and their significance 

tested at α = 0.05 with the method ‘pearson’ from the function ‘cor.test’ in R version 3.6.1 (R 

Core Team 2019). 

SNP Marker Genotyping 

The sweet corn inbred association panel was sequenced via the genotyping-by-sequencing (GBS) 

procedure of Elshire et al. (2011) with ApeKI at the Cornell Biotechnology Resource Center 

(Cornell University, Ithaca, NY, USA) as previously described (Baseggio et al. 2019). The 

procedure of Baseggio et al. (2020) for SNP calling, filtering, and imputing missing genotypes 

was used to construct a SNP marker dataset for the genetic dissection and prediction of fresh 

kernel elemental phenotypes. In brief, the raw GBS sequencing data from Baseggio et al. (2019) 

was processed through the production pipeline in TASSEL 5 GBSv1 with the ZeaGBSv2.7 

Production TagsOnPhysicalMap file to call SNPs at 955,690 loci in B73 RefGen_v2 coordinates 

(Glaubitz et al. 2014). These raw SNP genotype calls were merged with those of 19 sweet corn 

inbred lines from Romay et al. (2013) that were not included in the Baseggio et al. (2019) GBS 

dataset, allowing for the assemblage of raw SNP calls for all 401 sweet corn inbred lines with 

BLUP values. 
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The combined raw dataset was initially filtered by keeping only biallelic SNPs with a call 

rate > 10% and eliminating singleton (heterozygous site) and doubleton (homozygous site) SNPs 

that score a minor allele in only a single individual. Given the potential to have resulted from 

paralogous alignments, we set heterozygous genotype calls with an allele balance score (lowest 

allele read depth/total read depth) < 0.3 to missing. If multiple GBS samples existed for an 

inbred line, SNP genotype calls from samples with the same accession number/identifier were 

merged and discordant genotype calls set to missing if identical-by-state (IBS) values for all 

within-line sample comparisons were > 0.99, following the conservative IBS threshold set by 

Romay et al. (2013). A single GBS sample with the highest SNP call rate was chosen to 

represent an inbred line if all pairwise IBS values were less than 0.99. 

The FILLIN haplotype-based imputation strategy of Swarts et al. (2014) was used to 

impute missing SNP genotypes to near completeness based on a set of maize haplotype donors 

with a window size of 4 kb. To improve the quality of the imputed dataset, we filtered SNPs in 

TASSEL 5 version 20190321 to remove those with a call rate < 70% (residual missing genotype 

data are expected for the haplotype-based imputation method of FILLIN; Swarts et al., 2014), a 

minor allele frequency < 5%, heterozygosity > 10%, coefficient of panmixia< 80%, or a mean 

read depth > 15. To uplift the genome coordinates of retained SNPs to B73 v4, the Vmatch 

software (Kurtz 2003) was used to align the 101 bp context sequence of each SNP to the B73 

RefGen_v4 reference genome, resulting in 147,762 high-quality SNP markers scored on the 401 

sweet corn inbred lines. 

Genome-Wide Association Study 

A GWAS was conducted across and within locations to identify SNP markers significantly 

associated with each elemental phenotype following the methods of Baseggio et al. (2020) with 
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minor modifications. In short, the Box-Cox power transformation (Box and Cox 1964) was used 

with an intercept-only model to choose the optimal value of convenient lambda (-2 to +2, 0.5 

increments) (Table S2) for transforming the BLUP values of each elemental phenotype to lessen 

heteroscedasticity and non-normality of the residuals with the MASS package in R version 3.6.1 

(R Core Team 2019). For each elemental phenotype, a mixed linear model (Yu et al. 2006; 

Zhang et al. 2010) that accounted for population structure and unequal relatedness with principal 

components (PCs) and a genomic relationship matrix (GRM; kinship) was used to test for an 

association between each of the 147,762 SNPs and transformed BLUP values in GEMMA 

software version 0.97 (Zhou and Stephens 2014). In the R package GAPIT version 2017.08.18 

(Lipka et al. 2012), 10,773 unimputed genome-wide SNPs (call rate >90%, MAF >5%, 

heterozygosity <10%, coefficient of panmixia >80%, and mean read depth <15) subsampled 

from the complete marker dataset were used to calculate PCs with the prcomp function and the 

kinship matrix with VanRaden’s method 1 (VanRaden 2008). The conservative imputation of 

residual missing SNP genotypes as heterozygous in both marker datasets was conducted in 

GAPIT.  

The Bayesian information criterion (BIC) (Schwarz 1978) was used to ascertain the 

optimal number of PCs to incorporate in the mixed linear model. Given that the predominant 

accumulation of some elements in the endosperm (Lombi et al. 2009, 2011; Pongrac et al. 2013; 

Baxter et al. 2014; Cheah et al. 2019) could potentially lead to spurious associations with su1 

and sh2 as shown for tocotrienols and certain carotenoids (Baseggio et al. 2019, 2020), 

endosperm mutation type (su1, sh2, or su1sh2) was also tested with the BIC for inclusion as a 

covariate in the model. Of the 401 inbred lines, 384 lines had endosperm mutation type scores 

available from Baseggio et al. (2019), whereas endosperm mutation type for each of the 
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remaining 17 lines without visual scores was predicted with the identical optimal marker-based 

classification models and 1000 kb marker datasets for the su1 and sh2 loci from Baseggio et al. 

(2019). 

To approximate the amount of phenotypic variation explained by a significantly 

associated SNP, we calculated the difference between the likelihood-ratio-based R2 statistic 

(R2
LR) of Sun et al. (2010) from a mixed linear model with or without the given SNP, following 

Baseggio et al. (2020). The false-discovery rate (FDR) was controlled at 5% by adjusting the P-

values (Wald test) of SNPs tested in GEMMA using the Benjamini–Hochberg multiple test 

correction (Benjamini and Hochberg 1995) with the ‘p.adjust’ function in R version 3.6.1 (R 

Core Team 2019). Given the large variance in the estimated distance to which median genome-

wide linkage disequilibrium (LD) decays to background levels (r2 < 0.1 by ~12 kb) in this 

association panel (Baseggio et al. 2019) and to account for the possibility of distant cis-

regulatory elements (Ricci et al. 2019), candidate gene searches were limited to ± 250 kb 

(median r2 ≤ 0.05) of the physical position of SNP markers significantly associated with an 

elemental phenotype. For each most plausible candidate gene, we used BLASTP to identify the 

top three unique best hits (E-values < 1) in Arabidopsis (Columbia-0 ecotype) and rice (Oryza 

sativa L. ssp. Japonica cv. ‘Nipponbare’) using default parameters at the TAIR 

(https://www.arabidopsis.org) and RAP-DB (https://rapdb.dna.affrc.go.jp) databases, 

respectively. The across-location (All Locs: New York, Florida, North Carolina, and Puerto 

Rico) results from JL analysis and GWAS of grain elemental phenotypes in the U.S. NAM panel 

(Ziegler et al. 2017) were integrated with the physical (bp) positions of GWAS signals from our 

study in B73 RefGen_AGPv4 coordinates following the approach of Wu et al. (2021). 
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The multi-locus mixed-model (MLMM) approach of Segura et al. (2012) that 

sequentially adds significant markers as covariates in the model was used to better clarify 

significant association signals with underlying large-effect loci at the level of an individual 

chromosome as previously described (Lipka et al. 2013). The optimal model was selected with 

the extended BIC (Chen and Chen 2008). To further assess the extent of statistical control for 

large-effect loci, GWAS was reconducted by including MLMM-selected SNPs as fixed effects 

(covariates) in mixed linear models fitted in GEMMA. 

Linkage disequilibrium 

The local patterns of LD surrounding significantly associated loci were investigated by 

estimating pairwise LD between SNPs with the squared allele-frequency correlation (r2) method 

of Hill and Weir (1988) in TASSEL 5 version 20190627 (Bradbury et al. 2007). The marker 

dataset used for estimation of LD consisted of the 147,762 SNPs without imputation of the post-

FILLIN residual missing SNP genotypes to heterozygotes. 

Whole-genome prediction 

A univariate genomic best linear unbiased prediction (GBLUP) model (Bradbury et al. 2007; 

VanRaden 2008) was used to evaluate whole-genome prediction (WGP) on the transformed 

across-location BLUP values of the 15 elemental phenotypes as previously described by 

Baseggio et al. (2020). In short, the 401 line x 147,762 SNP genotype matrix with post-FILLIN 

missing data imputed as a heterozygous genotype was used to construct a GRM with method 1 

from VanRaden (2008) in GAPIT version 2017.08.18 (Lipka et al. 2012). Next, the constructed 

GRM was modeled as a random effect to predict each individual elemental phenotype with the 

function ‘emmreml’ in version 3.1 of the R package EMMREML (Akdemir and Okeke 2015). 

Through the implementation of a five-fold cross-validation scheme conducted 50 times for each 
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elemental phenotype, the predictive ability of a phenotype was calculated as the mean Pearson’s 

correlation between transformed BLUP (observed) and genomic estimated breeding values 

(predicted). Each fold was representative of genotype frequencies for endosperm mutants (su1, 

sh2, and su1sh2) observed in the whole association population. Endosperm mutation type (su1, 

sh2, or su1sh2) was also evaluated as a covariate in prediction models, with the same cross-

validation folds used across models with or without the covariate for endosperm mutation type. 

Data availability 

All raw GBS sequencing data are available from the National Center of Biotechnology 

Information Sequence Read Archive under accession number SRP154923 and in BioProject 

under accession PRJNA482446. The ZeaGBSv2.7 Production TagsOnPhysicalMap file 

(AllZeaGBSv2.7_ProdTOPM_20130605.topm.h5) for calling SNPs, the raw SNP genotype data 

in B73 AGPv2 coordinates (ZeaGBSv27_publicSamples_rawGenos_AGPv2-150114.h5) for the 

19 sweet corn lines of Romay et al. (2013), and the maize haplotype donor file 

(AllZeaGBSv2.7impV5_AnonDonors4k.tar.gz) for imputing missing genotypes are on CyVerse 

(https://datacommons.cyverse.org/browse/iplant/home/shared/panzea/genotypes/GBS/v27). The 

BLUP values of the 15 elemental phenotypes and the FILLIN imputed SNP genotype calls in 

B73 AGPv4 coordinates for the 401 inbred lines are available at CyVerse: 

(https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Baseggio

_SweetcornElement_2021). The Supplemental Figures and Tables are available at CyVerse: 

(https://datacommons.cyverse.org/browse/iplant/home/shared/GoreLab/dataFromPubs/Baseggio

_SweetcornElement_2021/BioRxivSupplementalInformation). Except for the University of 

Wisconsin germplasm, all inbred lines included in the sweet corn association panel are in the 

public domain. A material transfer agreement is required to obtain some of the Wisconsin lines. 
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RESULTS 

Phenotypic variation 

The extent of phenotypic variation for 15 elements in fresh kernels as quantified by ICP-MS was 

evaluated in an association panel of 401 sweet corn inbred lines that was grown in two field 

locations (Verona, WI; and Aurora, NY) in 2014 and 2015. Of the five macroelements studied, 

potassium, phosphorus, sulfur, and magnesium had average concentrations greater than 1,000 μg 

g-1, whereas calcium had an average concentration of nearly 60 μg g-1 (Table 1). Average 

concentrations ranged from 0.012 (cadmium) to 24.52 (zinc) μg g-1 for the 10 microelements. 

Even though cadmium had the lowest mean concentration, it had a 12.11-fold range in variation 

(maximum BLUP value divided by the minimum BLUP value), whereas the other 14 elements 

covered a 1.34- to 3.66-fold range in variation. When separating inbred lines according to their 

endosperm mutation type (Table 2), copper, iron, manganese, and potassium were found to be at 

significantly (P < 0.001) greater concentrations in the sh2 (n = 78) group relative to the su1 (n = 

301) group. 

Implying common genetic control (Baxter 2015), shared chemical and physiological 

properties (Marschner 2011), or storage with phytic acid (Maathuis 2009), element pairs with 

strong positive correlations (r > 0.50; P < 0.01) across locations (Figure S1) were as follows: 

strontium/calcium, magnesium/phosphorus, zinc/iron, and phosphorus/zinc. Suggestive of a 

distinct genetic architecture, molybdenum was the element most weakly correlated with other 

elements across locations (Figure S1), having a significant but very weak positive correlation (r 

= 0.12; P = 0.02) with zinc alone. With the exception of boron (�!�

= 0.15) that can have elevated 

background levels from the use of glass (sodium borosilicate) tubes for chemical digestion 

(Baxter et al. 2014), the across-location heritability estimates (Table 1) for the elemental 
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phenotypes were 0.40 (sulfur) and larger. The G×E interaction term was only significant for 

boron, copper, iron, magnesium, and rubidium, whereas the genotype term was significant for all 

15 elements (Figure S2 and Table S1). 

When investigating phenotypic variation between locations, we found that only the 

average concentration of sulfur was not significantly different between locations (Figure S3). 

Indicative of phenotypes with a range of responsiveness to the environment, the correlation (r) of 

elemental trait BLUPs between locations ranged from 0.08 (boron) to 0.68 (copper), with an 

average correlation of 0.42 (Figure S4). Despite the mostly moderate correlations between 

locations, within-location heritability estimates (Table S3) were comparable to those estimated 

across locations (Table 1) and strongly correlated (r = 0.81) between the NY and WI locations. 

Altogether, our findings suggest that there is value in exploring the genetic dissection of 

elemental fresh kernel phenotypes across- and within-locations. 
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Genome-Wide Association Study 

We investigated the genetic basis of natural variation for the concentration of 15 elements in 

fresh kernels from the sweet corn association panel of 401 inbred lines that had been evaluated in 

four environments (two years × two locations) and scored with 147,762 genome-wide SNP 

markers. Through an across-location GWAS conducted with a unified mixed linear model that 

accounted for population structure, relatedness, and endosperm mutation type, 220 unique SNPs 

were found to associate with one of three elements (cadmium, zinc, or boron) at a genome-wide 

FDR of 5% (Table S4). Significant association signals were only found on chromosomes 1 

(boron), 2 (cadmium), and 7 (zinc), with the exception of a single SNP associated with cadmium 

on chromosome 8 (Figure S5). 

The strongest association signal was identified for the concentration of cadmium, 

consisting of 191 significant SNPs that covered a 36.03-Mb interval within a long-range LD 

region of chromosome 2 (Figure 1A). The peak SNP (S2_157751802; P-value 1.53×10-23; 

162,398,589 bp) for this complex association signal (Table S4), which explained 18% of the 

phenotypic variance for cadmium, was positioned within the open reading frame (ORF) of a 

gene (Zm00001d005174) that codes for a protein that belongs to the superfamily of uridine 

diphosphate-glycosyltransferases (www.maizegdb.org). However, this and other candidate genes 

within 250 kb of the peak SNP (www.maizegdb.org) were considered to unlikely be involved in 

cadmium accumulation. Given the extensive LD within this recombination suppressed region 

(Gore et al. 2009; Rodgers-Melnick et al. 2016), we searched for more plausible candidate genes 

within 250 kb of other significant SNPs in LD with the peak SNP. This led to our primary focus 

on five SNPs significantly associated with cadmium that were ~630 kb from the peak SNP, in 

moderately strong LD (mean r2 of 0.48) with the peak SNP and located within the heavy metal 
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ATPase3 (hma3; Zm00001d005190) and heavy metal ATPase4 (hma4; Zm00001d005189) genes 

(Table S5). Notably, the hma3 and hma4 genes encode proteins with 71% and 66% amino acid 

sequence identity to OsHMA3 (Table S5), a P1B-type ATPase involved in sequestration of 

cadmium in root vacuoles of rice (Ueno et al. 2010). 

To better resolve the expansive association signal resulting from a large-effect locus 

located in a long range, high LD genomic region, a chromosome-wide multi-locus mixed-model 

procedure (MLMM) was conducted for cadmium. The resulting optimal model only included the 

peak SNP (S2_157751802) on chromosome 2 (Table S6). When GWAS was reconducted with 

this MLMM-selected SNP included as a covariate in the mixed linear model to control for this 

large-effect locus on chromosome 2, all other previously significant associations on 

chromosomes 2 and 8 were no longer significant at a genome-wide FDR of 5% (Figure 1B). 
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Figure 1. Genome-wide association study for cadmium concentration in fresh kernels of sweet 
corn. (A) Scatter plot of association results from a mixed model analysis and linkage 
disequilibrium (LD) estimates (r2). The vertical lines are –log10 P-values of single nucleotide 
polymorphisms (SNPs), with the blue color representing SNPs that are statistically significant at 
a 5% false discovery rate (FDR). Triangles are the r2 values of each SNP relative to the peak 
SNP (indicated in red) at 162,398,589 bp (B73 RefGen_v4) on chromosome 2. The red 
horizontal dashed line indicates the –log10 P-value of the least statistically significant SNP at a 
5% FDR. The black vertical dashed lines indicate the genomic positions of the heavy metal 
ATPase4 (hma4; Zm00001d005189; 163,016,710-163,020,248 bp) and heavy metal ATPase3 
(hma3; Zm00001d005190; 163,038,225-163,041,426 bp) genes. These two genes are separated 
by a physical distance of ~18 kb, thus their positions are not distinguishable at the plotted scale. 
(B) Scatter plot of association results from a conditional mixed linear model analysis and LD 
estimates (r2). The SNP from the optimal multi-locus mixed-model (S2_157751802) was 
included as a covariate in the mixed linear model to control for the large-effect locus. None of 
the tested SNPs were significant at a 5% FDR. 
 

We identified 21 SNPs that spanned a 1.21-Mb region on chromosome 7 that were 

significantly associated with the concentration of zinc in fresh kernels (Figure 2A). The peak 

SNP (S7_174515604; P-value 3.19×10-10; 180,076,727 bp) for this association signal explained 
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7% of the phenotypic variance for zinc and was located within the ORF of a gene 

(Zm00001d022563) that encodes a tetratricopeptide repeat-like superfamily protein 

(www.maizegdb.org). Notably, this peak SNP was located ~111 kb from the nicotianamine 

synthase5 (nas5) gene (Zm00001d022557; Table S5), which encodes a class II NAS that 

presumably contributes to the production of the metal chelator nicotianamine (Zhou et al. 2013). 

Of the 21 detected SNP-zinc associations, SNP S7_174279369, which was located ~160 kb from 

nas5 and in moderately strong LD (r2 = 0.49) with the peak SNP for zinc, also had a near 

significant association (FDR-adjusted P-value 0.06) with the concentration of iron in fresh 

kernels. When using the chromosome-wide MLMM procedure to better clarify the association 

signal complex within the 1.21-Mb region on chromosome 7 for zinc, only the peak SNP 

S7_174515604 was included in the optimal model (Table S6). With the MLMM-selected peak 

SNP as a covariate, a conditional mixed model analysis did not detect any SNPs significantly 

associated with zinc (Figure 2B).   
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Figure 2. Genome-wide association study for zinc concentration in fresh kernels of sweet corn. 
(A) Scatter plot of association results from a mixed model analysis and linkage disequilibrium 
(LD) estimates (r2). The vertical lines are –log10 P-values of single nucleotide polymorphisms 
(SNPs), with the blue color representing SNPs that are statistically significant at a 5% false 
discovery rate (FDR). Triangles are the r2 values of each SNP relative to the peak SNP (indicated 
in red) at 180,076,727 bp (B73 RefGen_v4) on chromosome 7. The red horizontal dashed line 
indicates the –log10 P-value of the least statistically significant SNP at a 5% FDR. The black 
vertical dashed line indicates the genomic position of the nicotianamine synthase5 (nas5; 
Zm00001d022557;179,964,493-179,965,584 bp) gene. (B) Scatter plot of association results 
from a conditional mixed linear model analysis and LD estimates (r2). The SNP from the optimal 
multi-locus mixed-model (S7_174515604) was included as a covariate in the mixed linear model 
to control for the large-effect locus. None of the tested SNPs were significant at a 5% FDR.  

 

Compared to cadmium and zinc, a relatively weaker association signal consisting of 

seven significant SNPs was identified for boron concentration on chromosome 1. Collectively, 

these seven SNPs comprised a 98.99-kb interval. The peak SNP (S1_189146031; P-value 

5.01×10-7; 191,327,920 bp), which was located within the ORF of a gene (Zm00001d031473) 
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encoding a protein with 87% sequence identity to an aminoacylase in rice (Table S5), explained 

5% of the phenotypic variance for boron concentration. Of the other candidate genes within  250 

kb of the peak SNP position, a gene (Zm00001d031476) found to be ~45 kb away from the peak 

SNP encodes a protein with 40-45% amino acid sequence identity to two heavy metal-associated 

isoprenylated plant proteins (HIPPs) in Arabidopsis (Table S5) that are putative 

metallochaperones (de Abreu-Neto et al. 2013). Indicative of a weaker effect locus, the MLMM 

procedure at the chromosome-wide level did not select any SNP for the optimal model. 

To identify marker-trait associations that may be location-specific, we conducted GWAS 

for the 15 fresh kernel elemental phenotypes within each location (NY, Figure S6; WI, Figure 

S7), resulting in significant association signals detected for cadmium (NY and WI), zinc (NY 

and WI), nickel (NY), and calcium (WI) at 5% FDR (Table S4). In the NY location, the 

association signal for cadmium consisted of 198 SNPs that defined a 36.89-Mb region on 

chromosome 2, with the peak SNP (S2_157751802; P-value 2.64×10-19; 162,398,589 bp) for the 

signal the same as detected for cadmium across locations (Table S4). Potentially the result of 

environmental variation combined with lower mapping precision from fewer evaluated inbred 

lines relative to the NY location (Table S3), a different peak association signal (S2_159765450; 

P-value 1.98×10-15; 164,415,588 bp) that contained 81 SNPs covering 32.92-Mb on chromosome 

2 was identified for cadmium in the WI location (Table S4). The peak SNP for the WI location 

was ~1.38-Mb from hma3 and hma4, whereas the peak SNP in the NY location was ~630 kb 

from the same two candidate genes. Within each location, the chromosome-level MLMM 

procedure was performed for cadmium (Table S6), selecting only the peak SNP that when 

included as a covariate in a conditional GWAS rendered all other associations on chromosomes 1 

(NY), 2 (NY and WI), and 3 (NY and WI) no longer significant. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.02.19.432009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.19.432009
http://creativecommons.org/licenses/by-nd/4.0/


 

25 

In both locations, the same SNP served as the peak association signal (NY: P-value 

4.89×10-8; WI: P-value 7.75×10-8) for zinc, which was ~111 kb from nas5 on chromosome 7 

(Table S4). The same SNP was also detected as the peak association signal for zinc across 

locations. The chromosome-wide MLMM approach selected only the peak SNP in the best 

model within each location (Table S6). With the peak SNP as a covariate in a conditional 

GWAS, the other previously detected SNPs for zinc on chromosome 7 in NY (6 SNPs) and WI 

(3 SNPs) did not remain significant. Similar to the results from conducting the across-location 

GWAS, SNP S7_174279369, which was ~160 kb from nas5, had a weak association (FDR-

adjusted P-value 0.07) with iron in the NY location. In contrast to the across-location GWAS, 

however, this SNP was not significantly associated with zinc in either the NY or WI locations 

(Table S4). 

A significant association signal was detected for calcium in the WI location but not the 

NY location (Table S4). This signal for calcium consisted of four SNPs on chromosome 10. The 

peak SNP (S10_124069084; P-value 6.09×10-08; 125,112,781 bp) was ~36 kb from a gene 

(Zm00001d025654) that codes for a protein with 47-49% sequence identity to two HIPPs in 

Arabidopsis (Table S5). Additionally, this peak SNP was selected by the MLMM in the optimal 

model at the chromosome-wide level (Table S6). In concordance with other conditional GWAS 

results, no other SNPs remained significant when SNP S10_124069084 was used as a covariate 

in the mixed linear model. 

Of the two field locations, we only detected a significant association for nickel in the NY 

location. The association signal for nickel on chromosome 9 consisted of four SNPs, with the 

peak SNP (S9_2213924; P-value 2.80×10-08; 1,934,330 bp) for the signal selected by the 

MLMM in the optimal model (Tables S4 and S6). The peak SNP was within the ORF of a gene 
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(Zm00001d044768) that encodes a protein 39-47% identical at the amino acid sequence level to 

three members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) 

family (NPF) in Arabidopsis (Table S5) that transport nitrate, amino acids, and hormones (Léran 

et al. 2014). Additionally, this peak SNP was ~44 kb from a gene (Zm00001d044771) coding a 

protein with 49-52% sequence identity to three matrix metalloproteinases (MMPs) in 

Arabidopsis (Table S5) that have a zinc-binding sequence (Marino and Funk 2012). All other 

significant SNPs on chromosome 9 and a single significant SNP on chromosome 5 were no 

longer significantly associated with nickel in a conditional mixed linear model with the peak 

SNP as a covariate. 

Whole-genome prediction 

We evaluated the predictive ability of WGP with 147,762 SNP markers for the across-location 

concentrations of 15 elements that had been scored on fresh kernels of the 401 inbred lines. The 

15 elements had an average predictive ability of 0.37, ranging in abilities from 0.19 for rubidium 

to 0.52 for copper (Table 3). The predictive abilities were above average for iron (0.45) and zinc 

(0.49), suggesting that genomic selection could be used to increase the concentration of both 

nutritionally limiting microelements in fresh sweet corn kernels. A strong positive Pearson’s 

correlation coefficient (r = 0.62 P-value < 0.05) was found between heritability estimates and 

predictive abilities for the 15 elemental phenotypes. Given the detection of significant 

differences among endosperm mutation types for 10 of the 15 elemental phenotypes (Table 2), 

endosperm mutation type was tested as an included covariate in WGP models, but changes to 

prediction abilities from its inclusion were zero to negligible (Table 3). 
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DISCUSSION 

Maintaining elemental homeostasis is critical for plants to realize optimal growth and complete 

their life cycle (Marschner 2011). Additionally, the elemental content and composition of edible 

plant parts are influenced by genetic and environmental factors (Watanabe et al. 2007; Baxter 

and Dilkes 2012; Baxter et al. 2014). Several genes responsible for natural variation of elemental 

levels in root and shoot tissues have been identified and characterized in plants (Huang and Salt 

2016; Yang et al. 2018), but considerable effort remains to pinpoint the genes regulating 

elemental levels in seed of crops. To further this research, we examined the extent of phenotypic 

variation for elemental concentrations in fresh kernels and performed a GWAS to identify 

candidate genes controlling this phenotypic variability in a sweet corn association panel. We also 

evaluated the ability of genome-wide markers to predict elemental concentrations, providing 

insights into the potential of genomic selection for optimizing the elemental profile of fresh 

kernels for human health and nutrition, especially iron and zinc. To the best of our knowledge, 

this work is the most extensive quantitative genetic analysis of elemental concentrations in fresh 

kernels of sweet corn. 

The rank order of average concentrations for the measured elements in fresh kernels from 

the sweet corn association panel was highly concordant with that observed for the same elements 

in physiologically mature grain from the maize Ames panel of non-sweet corn tropical and 

temperate inbred lines (Wu et al. 2021) and the B73 (dent; Su1) x IL14H (sweet corn; su1) 

recombinant inbred line (RIL) family of the U.S. NAM panel (Baxter et al. 2014). Our sweet 

corn association panel showed a range of 13.66-28.11 and 18.58-32.10 μg g-1 on a dry weight 

basis for iron and zinc, respectively. However, these ranges were both lower and narrower than 

that found for iron (14.62 - 36.33 μg g-1; 3.29 S.D.) and zinc (12.59 - 52.32 μg g-1; 4.36 S.D.) in 
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physiologically mature grain from the maize Ames panel (Wu et al. 2021). With consideration of 

losses from processing and bioavailability, the recommended target level iron and zinc grain 

concentrations established by HarvestPlus, which has a primary focus on developing nations 

where nutritional deficiencies are prevalent, are 60 and 38 μg g-1 dry weight, respectively, for 

developing biofortified maize based on achieving ~30-40% of estimated average requirements 

for adult women (nonpregnant, nonlactating) when consuming 400 g d-1 of whole maize grain 

(Bouis and Welch 2010). Although the maximum iron concentration observed in our sweet corn 

association panel (28.11 μg g-1 dry weight) is ~2-fold lower than the HarvestPlus breeding target, 

there are six inbred lines that have zinc concentrations ranging from 30.00 to 32.10 μg g-1 dry 

weight. As it relates to the consumption of fresh sweet corn when not a primary source of daily 

calories, the estimated maximum fresh kernel concentrations observed in our association panel 

would provide approximately 4-9% and 7-10% of the RDA of iron and zinc, respectively, for 

adult non-elderly women (nonpregnant, nonlactating) and men when consuming 100 g (~75% 

water) of uncooked fresh sweet corn. Irrespective of lacking experimental data from 

bioavailability assays, our comparison of phenotypic distributions to dietary guidelines implies 

that the top 5% highest ranking lines for iron (≥ 22 μg g-1 dry weight) and zinc (≥ 28 μg g-1 dry 

weight) concentrations have promise for establishing a biofortification program for sweet corn. 

We assessed whether the concentrations of elements differed significantly among 

endosperm mutation group types. Of the 15 elements, copper, iron, manganese, potassium, and 

sulfur were highly significantly different (P < 0.001) between two or more endosperm mutation 

type groups (su1, sh2, and su1sh2) (Table 2). Relatedly, Baxter et al. (2014) showed that the 

content for four (iron, manganese, potassium, and sulfur) of these five elements significantly 

differed (P < 0.0005) between visibly ‘wrinkled’ (su1/su1) and ‘non-wrinkled’ (Su1/su1 or 
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Su1/Su1) kernels harvested at physiological maturity. As it relates to the spatial distribution of 

elements in sweet corn kernels, Cheah et al. (2019) analyzed immature (21 DAP) kernels from a 

single sweet corn (sh2) variety via synchrotron-based X-ray fluorescence microscopy to reveal 

that potassium and calcium were generally present throughout the kernel, sulfur concentrated 

mainly in the axis of the embryo and the periphery of the endosperm, and the scutellum of the 

embryo had at least 20-fold higher concentrations of phosphorus, iron, zinc, and manganese than 

in the endosperm. Notably, Cheah et al. (2019) also showed that these spatial distribution maps 

for elements were highly similar to those of immature maize (non-sweet corn) kernels. Despite 

these valuable insights from earlier studies, further experimental work will be needed to 

determine whether the observed significant difference in concentrations of the five elements 

among endosperm mutation type groups in our sweet corn association panel were attributed to 

variation in physiological, genetic, and/or physical attributes of fresh kernels. 

Conducting GWAS across locations for the concentrations of elements in fresh kernels of 

the sweet corn association panel resulted in the identification of candidate genes associated with 

cadmium and zinc at the genome-wide level. Of these elements, the strongest association signal 

was for cadmium, having an association signal on chromosome 2 that spread more than 35-Mb 

across a recombinationally inert genomic region. Additionally, the peak SNP of this association 

signal co-localized with the single across-location QTL detected for grain cadmium 

concentration in the maize NAM panel (Tables S4 and S7), but the GWAS resolution for this 

region in the NAM panel (Table S8) was too limiting to convincingly identify an underlying 

causal gene (Ziegler et al. 2017). In our sweet corn association panel, however, two likely 

candidate causal genes were identified, hma3 and hma4, both having SNPs in moderately strong 
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LD with the peak SNP of the association signal. These genes are two of a 12-member gene 

family encoding HMAs in the genome of maize inbred line B73 (Cao et al. 2019). 

Of the 12 HMA genes, the proteins encoded by hma3 and hma4 have high sequence 

identity (Table S5) to the P1B-type ATPase, OsHMA3—a tonoplast-localized zinc/cadmium 

transporter that has been shown to be expressed in rice roots, mediates cadmium and zinc 

vacuolar sequestration and, as such, participates in zinc homeostasis and root-to-shoot cadmium 

translocation (Ueno et al. 2010; Miyadate et al. 2011; Sasaki et al. 2014; Cai et al. 2019). The 

loss-of-function of OsHMA3 has been associated with cadmium accumulation in rice grains, 

whereas low-cadmium rice cultivars express a functional OsHMA3 (Ueno et al. 2010). 

Furthermore, Ueno et al. (2010) have shown that the overexpression of OsHMA3 selectively 

decreased the accumulation of cadmium, but not other elements in the grain. In a follow-up 

study, Sasaki et al. (2014) showed that overexpression of OsHMA3 resulted in sequestration of 

both cadmium and zinc in rice root vacuoles, but the concentration of zinc in shoots was 

unaffected through the constitutive upregulation of transporter genes having putative 

involvement in the uptake and translocation of zinc. In agreement with Sasaki et al. (2014), we 

found no evidence of the large-effect locus spanning hma3 and hma4 having a significant 

association with zinc concentration in fresh sweet corn kernels. Importantly, Cao et al. (2019) 

identified several polymorphisms within hma3 to be significantly associated with leaf cadmium 

concentration at the seedling and adult plant stages in a maize diversity panel. Moreover, they 

further showed the expression level of hma3 to be highly upregulated in the roots of B73 in 

response to cadmium stress, whereas the expression of hma4 was undetectable in roots under the 

same conditions (Cao et al. 2019). Considering this, we propose that hma3 is the more likely of 

the two genes to have played a key genetic role in the accumulation of cadmium in fresh kernels. 
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The nas5 gene was found to be within  250 kb of the peak SNP for the across-location 

zinc and iron association signals on chromosome 7. These findings co-locate with the GWAS 

results of Ziegler et al. (2017) and Wu et al. (2021) from the U.S. maize NAM (Tables S4, S7, 

and S8) and Ames mapping panels, respectively, that implicated nas5 as a possible pleiotropic 

controller for the concentrations of both zinc and iron in physiologically mature grain samples. 

As one of nine gene family members in the B73 reference genome, nas5 phylogenetically groups 

together with nas3 and nas4, which together comprise class II nas genes (Zhou et al. 2013). The 

NAS enzyme encoded by nas5 is hypothesized to be involved in the production of the non-

proteinogenic amino acid, nicotianamine, an efficient chelator of  transition metals including zinc 

and iron (Takahashi et al. 2003; Curie et al. 2009; Swamy et al. 2016). In addition to a suggested 

role in intracellular metal homeostasis, nicotianamine facilitates phloem-based metal delivery 

from source (e.g., leaves) to sink (e.g., seeds) tissues (Takahashi et al. 2003; Curie et al. 2009; 

Swamy et al. 2016). Nicotianamine also serves as a precursor for the synthesis of root-exuded 

mugineic acid-type phytosiderophores that chelate divalent metals for eventual root uptake 

(Curie et al. 2009; Swamy et al. 2016). 

Consistent with a proposed role of nas5 in long-distance metal transport rather than 

uptake into roots, Zhou et al. (2013) showed that transcripts of class II nas genes including nas5 

accumulated mainly in maize leaves and sheath, whereas class I nas genes were predominantly 

expressed in maize roots. Interestingly, of the three class II nas genes, nas5 was more highly 

expressed in maize stems, further suggesting its contribution to long-distance metal transport and 

perhaps its contribution to metal loading to seeds (Zhou et al. 2013). In addition, the 

transcriptional expression level of nas5 was downregulated by iron deficiency in both shoots and 

roots but upregulated under excess iron and zinc in roots. Activation tagging of OsNAS3, the 
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closest rice homolog of nas5 (Zhou et al. 2013), produced an increased level of nicotianamine 

that resulted in elevated levels of zinc and iron in shoots, roots, and seeds of activation-tagged 

rice plants (Lee et al. 2009). Despite the lack of functional validation, results from the maize 

association mapping and transgenic rice studies strongly support the nomination of nas5 as a 

causal gene for controlling zinc and iron concentrations in fresh sweet corn kernels. 

Similar to our findings with nas5 in the sweet corn association panel, Wu et al. (2021) 

also identified a stronger association signal of nas5 with zinc relative to iron in the maize Ames 

panel. This finding is not entirely surprising considering that the affinity constants (Kd) of 

complexes of nicotianamine with zinc is higher than for nicotianamine with iron (Curie et al. 

2009; Gayomba et al. 2015). Therefore, it is plausible to propose that equimolar concentrations 

of iron and zinc would result in the selection of zinc for nicotianamine over iron (Curie et al. 

2009; Gayomba et al. 2015). It is also noteworthy that the concentration of zinc in the phloem 

sap is thought to be higher than the concentration of iron (Reviewed in Gayomba et al. 2015), 

thus reinforcing the suggested role of nicotianamine and nas5 in zinc accumulation in fresh 

kernels. 

In contrast to the highly probable causality of the hma3 and nas5 loci detected via GWAS 

across and within both locations, there is only moderately compelling evidence for the genetic 

involvement of identified candidate genes for the concentrations of boron (across locations), 

calcium (WI), and nickel (NY). Of the genes within 250 kb of the peak SNP for the boron 

association signal on chromosome 1, two genes encoding a putative protein with sequence 

identity to either an aminoacylase (Zm00001d031473) or HIPP (Zm00001d031476) were the 

most plausible candidates. Under boron deficiency, aminoacylases (metalloenzymes involved in 

amino acid metabolism) have been shown to have decreased protein and increased transcript 
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levels in Brassica napus L. roots and Citrus sinensis leaves, respectively (Wang et al. 2010; Lu 

et al. 2015). Transcriptome profiling revealed a HIPP to be upregulated in leaves and roots of 

black poplar (Populus nigra L.) grown under boron toxicity (Yıldırım and Uylaş 2016), which 

perhaps is not surprising given that HIPPs are metallochaperones involved in the transport of 

metallic ions and response to abiotic stresses (de Abreu-Neto et al. 2013). Despite these findings 

in other plant systems, the exact mechanism by which the identified aminoacylase and HIPP 

would have contributed to the accumulation of boron in fresh kernels is unknown but 

nevertheless merits further experimental investigation. 

Although the peak SNP associated with calcium concentration in the WI location resided 

within a genomic region that lacked a definitive candidate gene, it was located ~36 kb from a 

gene (Zm00001d025654) encoding a putative HIPP. However, to our knowledge, HIPPs have 

never been experimentally shown to bind Ca2+ (de Abreu-Neto et al. 2013), thus an in vitro study 

would be needed to determine whether Ca2+ is bound by the putative HIPP that 

Zm00001d025654 encodes. It is interesting that collectively, two different HIPP candidate genes 

were identified for the concentrations of boron and calcium, but these proteins would not be 

expected to have similar roles given that calcium and boron have different chemical and 

physiological properties (Marschner 2011). Regardless, these findings open new avenues of 

inquiry that could deepen our understanding of the genetic basis of boron and calcium 

accumulation in fresh sweet corn kernels. 

In contrast to calcium, the nickel association signal for the NY location coincided with 

association signals detected for nickel grain concentrations in the maize NAM (Tables S4, S7, 

and S8) and Ames panels (Ziegler et al. 2017; Wu et al. 2021). This still genetically unresolved 

signal consisted of two possible candidate genes, an MMP (Zm00001d044771) and NPF member 
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(Zm00001d044768). Even though MMPs could conceivably bind nickel in place of zinc (Cerdà-

Costa and Gomis-Rüth 2014), their proteolytic activities to remodel the extracellular matrix 

(Marino and Funk 2012) lack a clear connection to nickel transport or accumulation. 

Additionally, the putative NPF member encoded by Zm00001d044768 is hypothesized to 

transport nitrate given its high sequence identity to members of the NPF5 subfamily in 

Arabidopsis (Table S5) (Niño-González et al. 2019), thus reducing but not completely 

eliminating the possibility that this yet-to-be characterized protein transports nickel or a substrate 

that binds nickel. 

We showed that, on average, moderate predictive abilities were achieved through the 

application of WGP for the across-location concentrations of the 15 elements in fresh sweet corn 

kernels. Additionally, these predictive abilities were found to be strongly correlated with 

heritability estimates, which coheres with expectations (Combs and Bernardo 2013). In 

accordance with these results, Wu et al. (2021) analyzed 11 of these 15 elements in mature grain 

samples from the maize Ames association panel that had been evaluated in a single location 

across two years, finding that the moderate predictive abilities of the 11 elements from WGP had 

a strong correlation with their heritabilities. Also, the prediction abilities presented in Table 3 

suggest that endosperm mutation type did not need to be considered as a covariate in WGP 

models to capture the genetic differences between the three groups at the genome-wide marker 

density employed in this study. Given that we observed significant G×E interaction for boron, 

copper, iron, magnesium, and rubidium, accounting for G×E in WGP models could result in 

slightly improved predictive abilities for these five elements. In support of this supposition, a 

multi-environment model incorporating G×E resulted in higher average prediction abilities for 

the concentration of zinc in kernels from a tropical maize inbred panel and a double haploid 
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population compared to those from single-environment models (Mageto et al. 2020). Therefore, 

this should be an area of further exploration when conducting multi-environment genomic 

selection for elemental phenotypes whether at the immature or mature stages of kernel 

development. 

The results from GWAS can be used to better inform how best to successfully implement 

genomic selection for the concentrations of elements in fresh sweet corn kernels. Apart from 

cadmium (18%) and zinc (7%), which each had a single locus explaining more than 5% of the 

phenotypic variance in the across-location GWAS, we observed relatively weaker association 

signals for boron, iron, and the other 11 elements in fresh kernels. Furthermore, we did not 

identify all of the strong association signals for the grain concentrations of boron, copper, 

manganese, molybdenum, nickel, and zinc that had been detected in the maize Ames panel (Wu 

et al. 2021). Compared to the Ames panel study of Wu et al. 2021 that had more than 2,000 

maize inbred lines, it is likely that the size of the sweet corn association panel in our study was 

too underpowered to identify these loci, whether because of their lower allele frequencies and/or 

weaker effects. Regardless, we posit that these elemental phenotypes are generally more 

polygenic than carotenoid and tocochromanol levels in fresh kernels of sweet corn that have a 

more oligogenic inheritance (Baseggio et al. 2019, 2020), thus making elemental phenotypes less 

tractable for genetic dissection in the sweet corn association panel. Therefore, genomic selection 

is more advisable than marker-assisted selection as a breeding approach for selecting for the 

concentration of elements in fresh kernels (Lorenz et al. 2011; Desta and Ortiz 2014). However, 

it is still worthwhile to assess the inclusion of large-effect loci as fixed effects such as those for 

cadmium and zinc in WGP models, as it could result in higher prediction abilities in specific 

sweet corn breeding populations (Bernardo 2014). 
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Conclusions 

We used a sweet corn association panel to study the quantitative genetics of natural variation for 

the concentrations of 15 elements in fresh kernels. Through an across-location GWAS, we 

strongly implicated the candidate causal genes nas5 with iron/zinc and hma3 with cadmium. 

Given that iron and zinc accumulation in fresh kernels have a partially shared genetic basis, the 

genetic correlation between these two phenotypes can be leveraged with multi-trait genomic 

selection approaches to possibly exceed the prediction accuracy of single-trait genomic selection 

(Jia and Jannink 2012) for simultaneous genetic gains in zinc and iron concentrations. Such 

efforts would help to address iron and zinc deficiencies of women, children, and older adults in 

the U.S. (Clark 2008) where sweet corn is highly consumed as a fresh vegetable. Importantly, the 

across- and within-location association signals at the nas5 and hma3 loci were specific to 

zinc/iron and cadmium, respectively. This suggests that genomic selection for lower cadmium 

accumulation to reduce possible toxicity should not influence zinc accumulation in the kernel. 

Even though 100 g of fresh sweet corn (medium-sized ear) with the maximum concentration of 

cadmium found in this panel is estimated to provide less than 2% of the provisional tolerable 

intake for this element in a day (0.8�μg/kg bw/day) (JECFA 2011) when consumed by a 70 kg 

person, efforts should be dedicated towards developing haplotype tagging SNP markers at the 

nas5 and hma3 loci for breeding sweet corn that has lower cadmium but higher bioavailable zinc 

and iron, considering that sweet corn can be grown in regions with naturally elevated cadmium 

levels, or with low zinc and iron levels.  
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Table Captions 

Table 1. Means and ranges for untransformed best linear unbiased predictors (BLUPs) of 15 

fresh kernel elemental phenotypes evaluated in the sweet corn association panel and estimated 

heritability (���
�) on a line-mean basis across two years and two locations. 

Table 2. Estimated effects of endosperm mutation type from untransformed best linear unbiased 

predictors of 15 fresh kernel elemental phenotypes across two years and two locations. 

Table 3. Predictive abilities of whole-genome prediction models for 15 fresh kernel elemental 

phenotypes in the sweet corn association panel. 

Table S1. Sources of variation for 15 elemental phenotypes in fresh sweet corn kernels from 

across locations, only NY, and only WI. The bolded variance component estimates are for 

significant random effect terms according to a likelihood ratio test (α = 0.05). 

Table S2. Lambda values used in Box-Cox transformation of 15 fresh kernel elemental 

phenotypes in sweet corn. 

Table S3. Means and ranges for best linear unbiased predictors (BLUPs) of 15 fresh kernel 

elemental phenotypes evaluated in the sweet corn association panel and estimated heritability on 

a line-mean basis across two years in each of two locations. 

Table S4. Significant results from a genome-wide association study of 15 fresh kernel elemental 

phenotypes in sweet corn and their intersection with joint-linkage QTL support intervals (NAM 

QTL number; Table S7) of elemental phenotypes analyzed in the maize NAM panel (Ziegler et 

al. 2017). 

Table S5. List of top BLASTP hits in rice and Arabidopsis for the eight maize candidate genes 

identified via a genome-wide association study of 15 fresh kernel elemental phenotypes in sweet 

corn. 
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Table S6. Multi-locus mixed-model results from an analysis of fresh kernel elemental 

phenotypes for chromosomes 2, 7, 9, and 10. 

Table S7. Joint-linkage QTL support intervals (SI) of elemental phenotypes analyzed in the 

maize NAM panel (Ziegler et al. 2017) uplifted from B73 RefGen_v2 to v4. 

Table S8. Genome-wide association study results of elemental phenotypes analyzed in the maize 

NAM panel (Ziegler et al. 2017) uplifted from RefGen_v2 to v4. Only NAM marker variants 

with resample model inclusion probability (RMIP) ≥ 5 are shown and those that reside within 

joint-linkage QTL support intervals (Table S7) are demarcated in the “NAM QTL number” 

column. The relationship of NAM marker variants to the four candidate genes identified in 

genome-wide association study in sweet corn that are coincident with joint-linkage QTL support 

intervals are presented.  
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Figure Legends 

Figure 1. Genome-wide association study for cadmium concentration in fresh kernels of sweet 

corn. (A) Scatter plot of association results from a mixed model analysis and linkage 

disequilibrium (LD) estimates (r2). The vertical lines are –log10 P-values of single nucleotide 

polymorphisms (SNPs), with the blue color representing SNPs that are statistically significant at 

a 5% false discovery rate (FDR). Triangles are the r2 values of each SNP relative to the peak 

SNP (indicated in red) at 162,398,589 bp (B73 RefGen_v4) on chromosome 2. The red 

horizontal dashed line indicates the –log10 P-value of the least statistically significant SNP at a 

5% FDR. The black vertical dashed lines indicate the genomic positions of the heavy metal 

ATPase4 (hma4; Zm00001d005189; 163,016,710-163,020,248 bp) and heavy metal ATPase3 

(hma3; Zm00001d005190; 163,038,225-163,041,426 bp) genes. These two genes are separated 

by a physical distance of ~18 kb, thus their positions are not distinguishable at the plotted scale. 

(B) Scatter plot of association results from a conditional mixed linear model analysis and LD 

estimates (r2). The SNP from the optimal multi-locus mixed-model (S2_157751802) was 

included as a covariate in the mixed linear model to control for the large-effect locus. None of 

the tested SNPs were significant at a 5% FDR. 

Figure 2. Genome-wide association study for zinc concentration in fresh kernels of sweet corn. 

(A) Scatter plot of association results from a mixed model analysis and linkage disequilibrium 

(LD) estimates (r2). The vertical lines are –log10 P-values of single nucleotide polymorphisms 

(SNP), with the blue color representing SNPs that are statistically significant at a 5% false 

discovery rate (FDR). Triangles are the r2 values of each SNP relative to the peak SNP (indicated 

in red) at 180,076,727 bp (B73 RefGen_v4) on chromosome 7. The red horizontal dashed line 

indicates the –log10 P-value of the least statistically significant SNP at a 5% FDR. The black 
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vertical dashed line indicates the genomic position of the nicotianamine synthase5 (nas5; 

Zm00001d022557;179,964,493-179,965,584 bp) gene. (B) Scatter plot of association results 

from a conditional mixed linear model analysis and LD estimates (r2). The SNP from the optimal 

multi-locus mixed-model (S7_174515604) was included as a covariate in the mixed linear model 

to control for the large-effect locus. None of the tested SNPs were significant at a 5% FDR. 

Figure S1. Correlation matrix for untransformed, across-location BLUPs of 15 elemental 

phenotypes from fresh kernels in the sweet corn association panel. Pearson’s correlation 

coefficients (r) are presented in the upper triangle, while the corresponding P-values for the 

significance of associations (α = 0.05) are displayed below the diagonal. 

Figure S2. Sources of variation for 15 elemental phenotypes in fresh sweet corn kernels from 

across locations (A), only NY (B), and only WI (C). The phenotypic variance of each trait was 

statistically separated into the following components: environment (Env), set within environment 

[Set(Env)], block within set within environment [Block(Set×Env)], genotype (Geno), genotype-

by-environment interaction (Geno×Env), inductively coupled plasma mass spectrometry run 

(ICP), kernel sample (Sample), row within environment [Row(Env)], column within 

environment [Col(Env)], and residual error variance (Residual). Variance component estimates 

were calculated for all random effects from the full model (Equation 1).  

Figure S3. Distribution of within-location BLUP values for 15 fresh kernel elemental 

phenotypes in the sweet corn association panel evaluated in NY and WI. Mean values of fresh 

kernel elemental concentration with significant differences (P < 0.05) between the two locations 

were designated with an asterisk (‘*’) according to a paired t-test. 

Figure S4. Correlation matrix for untransformed, within-location BLUPs of 15 elemental 

phenotypes from fresh kernels in the sweet corn association panel. Pearson’s correlation 
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coefficients (r) between phenotypes within NY and WI are presented in the upper and lower 

triangles, respectively. The diagonal represents the correlation of each trait between locations. 

Bolded values correspond to significant correlations (P-value ≤ 0.05). 

Figure S5. Genome-wide association study conducted across both locations for 15 fresh kernel 

elemental phenotypes in sweet corn. Each point represents a SNP with its -log10 P-value (y-axis) 

from a mixed linear model analysis plotted as a function of physical position (B73 RefGen_v4) 

across the 10 chromosomes of maize (x-axis). The red horizontal dashed line indicates the -log10 

P-value of the least statistically significant SNP at 5% false discovery rate. 

Figure S6. Genome-wide association study conducted within the New York location for 15 fresh 

kernel elemental phenotypes in sweet corn. Each point represents a SNP with its -log10 P-value 

(y-axis) from a mixed linear model analysis plotted as a function of physical position (B73 

RefGen_v4) across the 10 chromosomes of maize (x-axis). The red horizontal dashed line 

indicates the -log10 P-value of the least statistically significant SNP at 5% false discovery rate. 

Figure S7. Genome-wide association study conducted within the Wisconsin location for 15 fresh 

kernel elemental phenotypes in sweet corn. Each point represents a SNP with its -log10 P-value 

(y-axis) from a mixed linear model analysis plotted as a function of physical position (B73 

RefGen_v4) across the 10 chromosomes of maize (x-axis). The red horizontal dashed line 

indicates the -log10 P-value of the least statistically significant SNP at 5% false discovery rate. 
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