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Plant molecular diversity and applications to genomics
Edward S Buckler IV* and Jeffry M Thornsberry

Surveys of nucleotide diversity are beginning to show how
genomes have been shaped by evolution. Nucleotide diversity
is also being used to discover the function of genes through
the mapping of quantitative trait loci (QTL) in structured
populations, the positional cloning of strong QTL, and
association mapping.
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Abbreviations

Adh Alcohol dehydrogenase
CRY2 CRYPTOCHROME2
LD linkage disequilibrium
QTL quantitative trait loci

Introduction

Surveys of nucleotide diversity provide a snap shot
of evolution at its most basic level. This nucleotide
diversity reflects a rich history of selection, migration,
recombination, and mating systems. Additionally, the
nucleotide diversity across a genome is the source of most
of the phenotypic variation.

In the past few years, there has been tremendous progress
in studying diversity within plant genomes, particularly
those of maize and Arabidopsis. In this review, we describe
some of the processes that are shaping diversity within
species and across their genomes, and how some of this
nucleotide variation can be related to phenotypic variation.

Plant diversity

Molecular diversity has been studied in plants for about
three decades. The most comprehensive early studies were
done using isozymes [1], which provided many insights
into population structure and breeding systems. Although
these markers allowed large numbers of samples to be
analyzed, comparisons of samples from different species,
loci, and laboratories were problematic. More importantly,
only a limited number of loci could be scored easily. In the
past decade, the focus has shifted to nucleotide-level
surveys of single genes from 10-20 different individuals
within a species. These nucleotide studies have identified
thousands of polymorphic sites that may be undergoing
selection but, in comparison with the isozyme studies,
these nucleotide surveys were often limited in terms of
sample size. Small sample sizes may impair our ability to
detect the impact of selection [2]. In the next decade, with

advances in genotyping capabilities, nucleotide surveys will
surely include sufficiently large numbers of samples to
allow robust analysis of population genetics.

The extent of polymorphism differs substantially between
species and sampled loci. Nucleotide diversity is normally
measured as the average sequence divergence between
any two individuals for given locus. For example, average
nucleotide diversity at any one locus ranges from less than
0.05% in some cotton loci [3] to over 5% at certain loci in
Leavenworthia stylosa and maize [4,5]. Some of this variation
in the extent of polymorphism reflects the choice of
species, but major differences are also observed for random
genes within a single genome. In a comprehensive study of
variation within a maize chromosome, the diversity at
21 loci varied by 16-fold [6°°]. The variation between loci
partly reflects sampling effects, but selection and other
factors also play an important role (Table 1). Until a large
number of orthologous loci are sampled [7], conclusions
from cross-species comparisons should be considered
extremely tentative.

Although many factors influence diversity (Table 1), the
neutral theory of evolution suggests that the level of
polymorphism (8) should be the product of the effective
population size (N.) and the mutation rate () (6 = 4N )
[8]. Unfortunately, there is little empirical proof of this
simple relationship in plants. Although plant lineages
differ in mutation rates [9,10], research has yet to show the
connection between the mutation rate and extent of gene
diversity. Proving the relationship between species popu-
lation size and level of polymorphism is complicated by
the need to integrate estimates of population size over
evolutionary time. There has been some success in
showing the effect of demographic changes in Arabidopsis
thaliana; rapid population expansion and inbreeding have
resulted in many isolated, and probably slightly deleterious,
polymorphisms becoming fixed in small populations [11-13].

Background selection is likely to be one of the major factors
determining nucleotide diversity [14]. In background
selection, reduced diversity at neutral sites can result
from selection against linked deleterious alleles that
have arisen by mutation [14]. Normally, recombination
breaks up chromosome regions. But, regions with low
rates of recombination should experience substantial
background selection, as large genomic regions are
selected against whenever a linked deleterious mutation
appears. In addition, a high incidence of selfing reduces
the effective recombination rate, and should reduce
diversity in selfing species. Background selection
suggests that diversity should be shaped by recombination
at the intragenomic scale and by outcrossing rate at the
species level.
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Table 1

Factors that impact nucleotide diversity.

Factor Correlation with ~ Scope
diversity
Mutation rate Positive Often whole
genome
Population size Positive Whole genome
Outcrossing Positive Whole genome
Recombination Positive Whole genome
Positive-trait selection Negative Individual genes
Line selection Negative Whole genome
Diversifying selection Positive Individual genes
Balancing selection Positive Individual genes
Background selection Negative Individual genes or
whole genome
Population structure Mixed Whole genome
Sequencing errors Positive Individual genes
PCR problems Negative Individual genes

The first empirical demonstration of the connection
between recombination and nucleotide diversity was in
Drosophila melanogaster. In this species, recombination
rates explained much of the variation in diversity [15]. In
tomatoes and other Lycopersicon spp., a correlation between
polymorphism and crossing-over events per physical
distance along the chromosome has been established, but
the effect explains only a small proportion of the variation
[16°,17]. A similar weak connection has also been observed
in Beta vulgaris [18]. Tenaillon e a/. [6°°] examined the
relation between recombination and nucleotide diversity
in maize, only to find somewhat mixed results. The loci
near the centromere, where recombination rates should
be low, were only marginally less diverse than those in
other regions of the chromosome. At the gene level,
Tenaillon ez a/. [6°°] found a strong correlation between
locus recombination rates and overall levels of diversity.
The pattern at the genome level may be difficult to find
if maize has hotspots of genes and recombination spread
throughout the genome [19].

Some data support the connection between selfing rate
and level of diversity, as suggested by the background
selection theories. In surveys of the Alohol dehydrogenase
(Adh) locus across five species [20-25], nucleotide diversity
was greatest in maize, an outcrossing species, whereas selfing
species often had lower levels of diversity. The various
Leavenworthia species have different mating systems, and
the expected relationship between nucleotide diversity and
outcrossing rate does appear to exist in this genus [26,27].
Comparisons between self-compatible and self-incompatible
Lycopersicon species show a strong positive connection
between diversity and outcrossing rate [16°]. Comparisons
of Adh diversity between mainly self-pollinated Arabidopsis
thaliana and outcrossing Arabidopsis lyrata indicate that
A. hyrata has greater nucleotide diversity within this locus at the
population level, but lower diversity at the species level [28].

Strong selection pressure is important in decreasing the
nucleotide diversity of some plant species. Most studies of

the effect of selection pressure on nucleotide diversity
have focused on domesticated crops, comparing the diversity
between wild relatives and cultivars. During the selection
of advantageous phenotypes, some crops appear to have
passed through bottlenecks that substantially reduced
diversity [29]. In contrast, many of the grass domesticates
have undergone rather modest decreases in diversity
relative to their wild relatives [7]. In domesticated maize,
the diversity is roughly 30% below that in its closest wild
relative [30-33]. However, the drop in diversity can be
substantially greater in some genes that were directly
involved in domestication. For example, at the zeosinte
branched locus in maize nucleotide diversity is 98% below
that in the closest wild relative [34]; however, this reduction
does not extend across the entire gene. The maintenance
of substantial diversity in the grass crops through the
domestication process may reflect the importance of the
grasses as subsistence crops. It is likely that grasses such as
maize, wheat, barley, and rice, had large effective population
sizes that met the needs of early farmers and therefore
could never be severely bottlenecked. This theory may
not explain nucleotide diversity in the grasses completely;
manioc, a probable subsistence domesticate, exhibits a
drop in diversity of roughly 75% at the G3pdh locus when
compared with its wild relatives [35].

Balancing selection and/or frequency-dependent selection
may also play an important role in increasing diversity at
specific loci within a genome. In these selection regimes,
selection favors the maintenance of multiple alleles with
different effects over evolutionary time. Excellent evidence
comes from the self-incompatibility loci. In some of these
loci, the allelic diversity may date back millions of years
[36]. Additionally, disease resistance genes appear to exhibit
rapid adaptive evolution in their expressed regions, probably
as a result of the evolutionary arms race with pathogens [37°].
Some of these loci also exhibit balancing selection, however,
with high levels of diversity [37°,38]. Another example
of the influence of balancing selection is found at the
phosphoglucose isomerase (Pgi(0) locus in Leavenworthia
stylosa. Some innovative tests of linkage disequilibrium
suggest that some of the high level of diversity at this locus
may be the product of balancing selection [4].

Dissecting diversity

Across a large genome, such as that of maize, diversity
can accumulate so that 150 million sites are commonly
polymorphic. A small but important proportion of these
polymorphisms is responsible for the complex variation
in phenotypic traits. This naturally occurring nucleotide
diversity is a treasure trove for investigating and harnessing
quantitative variation. To improve crops, it is essential that
we sort through this diversity to find the alleles and
polymorphisms that are beneficial.

The detection of nucleotide diversity by the use of
polymorphic DNA markers has allowed the analysis of
naturally occurring allelic variation that is responsible for
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complex quantitative traits [39—41]. Initial quantitative
trait loci (QTL) studies in F, populations and recombinant
inbred lines mapped the sources of quantitative variation
[42,43], but generally the resolution of these maps was
limited to 5-10 cM, about 10-20 million base pairs in the
case of maize. At this resolution, there are still hundreds
of genes within each QTL.

Map-based strategies have been developed that can be
used for the positional cloning of genes that underlie QTL
(reviewed in [44]). Morphological differences between maize
and its wild relative teosinte have been studied through
the analysis of QTL. By combining QTL mapping, the
production of near isogenic lines, and transposon tagging,
one of the major QTL involved in maize domestication
(i.e. teosinte branchl) has been cloned [45]. In tomato, two
genes that underlie QTL for yield-related traits have
been cloned. The gene responsible for variation in the
soluble solid content of tomato fruit, identified as L5,
was discovered using a map-based strategy that targeted
the nucleotide diversity in wild relatives of tomato [46].
Map-based cloning and subsequent complementation
tests identified a single gene, fruit weight 2.2, that is
responsible for the variation in tomato fruit size [47]. In
rice, the same strategy enabled the cloning of Heading
datel, a major flowering-time QTL, which encodes a protein
with high similarity to that encoded by the Arabidopsis
gene CONSTANS [48]. A single QTL at the Frigida
locus, which is responsible for the vernalization response
of Arabidopsis flowering, was also cloned using a map-
based strategy [49]. Most recently, QTL mapping and
positional cloning were used to identify a unique allele of
CRYPTOCHROME?Z (CRY?2), which is responsible for some
of the variation in Arabidopsis flowering time [50°°].

Despite the success of these strategies, gene discovery
appears to be limited to those loci that have large effects
upon quantitative variation. Quantitative traits are generally
the product of numerous loci with varying degrees of effect
upon the observed phenotypes. Techniques are therefore
needed to rapidly identify genes that play a modest role in
regulating quantitative variation. Current procedures are
very time consuming; in species that are limited to two
growing seasons per year, it can take five years to produce
the population needed for fine-scale mapping. With
thousands of genes to evaluate for QTL effects, a more
efficient approach is needed to complement map-based
cloning. This role may be fulfilled by the application of
association tests to naturally occurring populations [51].

Association approaches have been used effectively in
human genetics [52,53], in which controlled breeding is
not possible and large numbers of progeny are not available.
In these approaches, candidate gene diversity is evaluated
across natural populations, and polymorphisms that
correlate with phenotypic variation are identified. The key
advantages of association tests include their speed, because
no mapping population need be created, and high resolution
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Comparison of resolution and research time for various approaches to
dissect quantitative variation. The research times assume the target
species has only two generations per year. NIL, near-isogenic line;
RIL, recombinant inbred line.

(Figure 1). The resolution of association approaches
depends on the structure of linkage disequilibrium (LLD)
(i.e. on the correlation between polymorphic loci) within
the test population. LD structure is being extensively
evaluated in humans [54,55], but has received little
attention in plants until recently. Surveys in maize
suggest that LD structure can decay quite rapidly, within a
few hundred bases in landraces and within 2000 bases in
diverse breeding material [6°°,56°]. Even in synthetic
populations, the level of LLD is modest [57]. There is new
evidence, however, that this decay is much slower in elite
maize germplasm (see review by Rafalski, this issue).

The primary obstacle to successful association studies in
plants is the nature of population structure. The presence
of subgroups with an unequal distribution of alleles within
a population can result in non-functional, spurious
associations [58]. In such populations, highly significant
associations between a marker and a phenotype may be
suggested [59], even though the marker is not physically
linked to the locus responsible for the phenotypic variation.
The complex breeding history of many agronomically
important crops and the limited gene flow in most wild
plants have created complex stratification within germplasm,
which complicates association studies [60].

In recent years, a few statistical methods have been devel-
oped that use independent marker loci to detect stratified
populations and to correct for them [61]. These methods
work on the assumption that population structure should
have similar effects upon all loci. Reich and Goldstein [62]
propose scoring the association of a moderate number of
unlinked genetic markers with a given phenotype, and then
comparing the strength of these associations with that of the
candidate gene’s association. Pritchard ez a/. [63°,64°°] have
developed an approach that incorporates estimates of popu-
lation structure directly into the association test statistic.
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The Pritchard approach has been modified for use with
quantitative traits and, in the first empirical application of
these methods, has been used to study flowering time in
maize [65°°]. In this study, the polymorphisms in the
maize Dwarf§ gene were significantly associated with
variation in flowering time. By accounting for population
structure, false positives were reduced in number by up to
80%. Using these statistical methods in an association test
allowed researchers to improve their resolution from the
level of a genetic bin to an individual gene. The identified
allele could be used in the molecular breeding of maize.

Conclusions

High-throughput DNA sequencing allows surveys of
nucleotide diversity to be conducted for a wide range of
species and loci, and evolutionary questions are starting
to be addressed using this wealth of data. Until carefully
designed studies of multiple orthologous loci across several
species are conducted, our understanding of the processes
underlying nucleotide diversity will be limited. Association
tests in natural populations are providing an exciting
opportunity to simultaneously use diversity to understand
the function of genes and to find useful alleles for plant
breeding and crop improvement. Association approaches
are amendable to high-throughput genomics and could be
used to characterize all of the genes in a genome.
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