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Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants
synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits.
Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds,
but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited.
To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association
study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual
and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting
tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation,
which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive
assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin
E content in seeds of maize and other major cereal crops.

INTRODUCTION

Tocochromanols are synthesized by all plant tissues but aremost
abundant in seeds, where they limit the oxidation of membrane
and storage lipids,making themessential for seed viability (Sattler
et al., 2004; Mène-Saffrané et al., 2010) and overall plant fitness
(Maedaetal., 2006;MaedaandDellaPenna,2007;DellaPennaand

Mène-Saffrané, 2011; Inoue et al., 2011). In the human diet, to-
cochromanols serve as both lipid-soluble antioxidants and the
essential nutrient vitamin E (Hussain et al., 2013; Ahsan et al.,
2015), with a-tocopherol having the highest vitamin E activity,
a-tocotrienol and g-tocopherol 3- and 6-fold lower activity, re-
spectively, and that of other tocochromanols being negligible
(Kamal-Eldin and Appelqvist, 1996; DellaPenna and Mène-
Saffrané, 2011). While plant seed oils are the major source of
dietary vitamin E, seeds of most crops predominantly contain
tocochromanols with low vitamin E activity (DellaPenna and
Mène-Saffrané, 2011).
Tocochromanols are synthesized in plastids using various

prenyl-diphosphates derived from the plastidic isopentenyl
pyrophosphate (IPP) pathway and homogentisic acid (HGA), an
intermediate in aromatic amino acid catabolism (Figure 1).
Condensation of HGA with phytyl-diphosphate (phytyl-DP),
geranylgeranyl-diphosphate (GGDP), or solanesyl-diphosphate
(solanesyl-DP) yields committed intermediates that are cyclized
andmethylatedtoproducethea,b,g,andd isoformsof tocopherols
and tocotrienols, and plastochromanol-8 (PC-8), respectively.
Tocochromanol biosynthesis is fully elucidated in Arabidopsis
thaliana and involves36enzymatic activities (encodedby53genes)
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for the biosynthesis of HGA, prenyl-diphosphates, and the core
tocochromanol pathway itself (vitamin E [VTE] loci 1 through 6;
DellaPenna and Mène-Saffrané, 2011; Lipka et al., 2013). Genes
encoding these enzymatic reactions are considered a priori can-
didates in the Arabidopsis genome that may influence natural
variation for tocochromanol traits. Because these 36 enzymatic
reactions are conserved across the plant kingdom (Cheng et al.,
2003; Sattler et al., 2004; Karunanandaa et al., 2005; Gilliland et al.,
2006; Tang et al., 2006; DellaPenna and Mène-Saffrané, 2011;
Fritsche et al., 2012; Wang et al., 2012) a priori homologs can be
readily identified in both monocot and dicot species (e.g., the
maize [Zea mays] genome contains 80 such a priori candidates
that encode these 36 activities; Supplemental Data Set 1). In
addition, like most monocots, maize also encodes homoge-
ntisate geranylgeranyl transferase (HGGT), the committed step
in tocotrienol biosynthesis (Cahoon et al., 2003).

The cloning of Arabidopsis VTE genes allowed the core toco-
chromanol pathway to be engineered for improved nutritional
content and composition in various plants (Shintani andDellaPenna,
1998; Savidge et al., 2002; Collakova and DellaPenna, 2003;
Karunanandaa et al., 2005; Kumar et al., 2005; Raclaru et al.,
2006; Hunter and Cahoon, 2007; Li et al., 2010; DellaPenna and
Mène-Saffrané, 2011; Lu et al., 2013; Zhang et al., 2013). Altering
the expression of the pathway methyltransferase genes, vte3
and vte4, has profound impacts on the qualitative profiles of
specific tocopherols and tocotrienols in leaves and seed
without affecting total tocochromanol levels (Shintani and
DellaPenna, 1998; Cheng et al., 2003; Van Eenennaam et al.,
2003; Karunanandaa et al., 2005; DellaPenna and Mène-
Saffrané, 2011; Lu et al., 2013). Engineering total tocotrienol
content has proven relatively straightforward, with hggt1
overexpression increasing tocotrienols to levels several times

Figure 1. Tocochromanol Biosynthetic Pathways in Maize.

Precursorpathwaysaresummarized ingrayboxes.Thesevenquantifiedcompoundsareshown inblack textwith their correspondingstructures.Keyapriori
genesare inbold italicized text at thepathwaystep(s) executedby their encodedenzymewith theeight apriori genes identified in this studyhighlighted in red
text.Compoundabbreviations:SDP, solanesyl diphosphate;Phytyl-DP,phytyl diphosphate;GGDP,geranylgeranyl diphosphate;HGA,homogentisic acid;
MSBQ, 2-methyl-6-solanyl-1,4-benzoquinol; MPBQ, 2-methyl-6-phytyl-1,4-benzoquinol; MGGBQ, 2-methyl-6-geranylgeranyl-1,4-benzoquinol; PQ-9,
plastoquinone-9; DMPBQ, 2,3-dimethyl-6-phytyl-1,4-benzoquinol; and DMGGBQ, 2,3-dimethyl-5-geranylgeranyl-1,4-benzoquinol. Gene abbreviations:
1-deoxy-D-xylulose-5-phosphate synthase (dxs2 and 3); arogenate/prephenate dehydrogenase family protein (arodeH2); solanesyl diphosphate synthase
(sds); phytol kinase (vte5); phytol phosphate kinase (vte6); p-hydroxyphenylpyruvate dioxygenase (hppd1); homogentisate geranylgeranyltransferase
(hggt1); MPBQ/MSBQ/MGGBQ methyltransferase (vte3); and g-tocopherol methyltransferase (vte4).
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that of tocopherols (Cahoon et al., 2003; Kim et al., 2011; Yang
et al., 2011; Zhang et al., 2013; Tanaka et al., 2015). In contrast,
engineering total tocopherol content ismore difficult, and even
with coordinate overexpression of multiple pathway steps, the
increasesachievedweremodest (Savidgeet al., 2002;Collakova
andDellaPenna, 2003; Karunanandaa et al., 2005; Raclaru et al.,
2006; Lu et al., 2013). Identification of the tocopherol-deficient
Arabidopsis vte5 and vte6 mutants (Valentin et al., 2006; Vom
Dorp et al., 2015), encoding kinases that sequentially phos-
phorylate phytol to generate phytyl-DP, suggestedamechanism
underlying the divergent engineering results for tocotrienols and
tocopherols: While tocotrienol biosynthesis can directly utilize
GGDP, tocopherol biosynthesis requires phytol to be produced
from GGDP and then phosphorylated.

Recent genome-wide association studies (GWAS) inmaize and
rice (Oryza sativa) grain (Li et al., 2012; Lipka et al., 2013; Wang
et al., 2015) showed strong associations of g-tocopherol meth-
yltransferase (vte4) with a-tocopherol concentrations and much
weaker associations of tocopherol cyclase (vte1), hggt1, and an
arogenate/prephenatedehydratasewith tocotrienol traits inmaize
grain (Lipka et al., 2013). The panel sizes and density of single-
nucleotidepolymorphisms (SNPs) in thesestudies limitedboth the
identificationof controlling loci andgene-level resolutionof causal
variants. In this study, we leveraged the superior statistical power
andmapping resolution of themaize nested associationmapping
(NAM) panel of ;5000 recombinant inbred lines (RILs) (Yu et al.,
2008; McMullen et al., 2009) and the ;29 million sequence var-
iants of maize HapMap v1 and v2 (Gore et al., 2009; Chia et al.,
2012) to comprehensively investigate the quantitative trait loci
(QTL) and underlying genes responsible for natural variation in
tocochromanol andvitaminE levels inmaizegrain, oneof themost
abundantly consumed food staples on the planet.

RESULTS

Genetic Dissection of Tocochromanol Accumulation in
Maize Grain

Weassessed the genetic basis of tocochromanol traits across the
25 RIL families of the U.S. maize NAMpopulation. Physiologically
mature grain samples were quantified for seven tocochromanol
compounds by HPLC with fluorescence detection, and the data
used to calculate best linear unbiased estimators (BLUEs) for the
sevencompounds, total tocopherols (ST), total tocotrienols (ST3),
and total tocochromanols (STT3) (Table 1; Supplemental Data Set
2). With the exception of PC-8, all traits had high estimates of
heritability (0.71 to 0.89; Table 1). Although the seven tocochro-
manols are synthesized by a shared biosynthetic pathway (Figure
1), only three pairs of compounds had correlations greater than
;0.4 (Supplemental Figure 1).

We mapped QTL across the 25 NAM families by joint-linkage
(JL) analysis using a composite genetic map of;14,000 markers
(Ogut et al., 2015). This identified162QTL,with eight to21QTLper
trait (Table 2; Supplemental Data Set 3) and phenotypic variance
explained (PVE) of 0.6 to 48.2% (Supplemental Data Sets 4 and 5).
Given the biosynthetic relationshipsof tocochromanols (Figure 1),
it seemed likely that multiple traits could be affected by individual

QTL and indeed, 90%of overlappingQTL support intervalswere
also significantly pleiotropic (Supplemental Data Set 6 and
Supplemental Figure 2). When overlapping QTL were merged,
their numberswere reduced from162 to52uniqueQTL intervals,
of which 31 affected multiple traits (Supplemental Data Set 4).
To more finely resolve these 52 unique QTL, we conducted

a GWAS using the;29million variants of maize HapMap v1 and
v2 imputed onto the ;4900 NAM RILs. A total of 1752 marker-
trait associations achieved a resample model inclusion prob-
ability (RMIP) value $0.05 (Valdar et al., 2009; Supplemental
DataSet 7). Of these, 34.5% localized to a corresponding trait JL
interval (Table 2), with 47 markers having associations with two
to four traits, for a total of 605marker-trait associations. Linkage
disequilibrium (LD) decays rapidly in the NAM panel, with the
majority of HapMap v1 and v2 polymorphisms (Gore et al., 2009;
Chia et al., 2012) showing average LD decay in genic regions to
background levels (r2 < 0.2) by 1 kb, but with large variance
dependent on allele frequencies (Wallace et al., 2014). As our
GWAS-detected markers showed a similar trend of LD decay
(Supplemental Figure 3), we limited our candidate gene search
space to 6100 kb of GWAS-detected variants, which is ap-
propriategiven thehighmarkerdensity and reported localization
of NAM GWAS signals to within a few kilobases of causal var-
iants (Wallace et al., 2014).
To aid in the identification of genes underlying QTL, we

employeda triangulation approach (Ritchieet al., 2015) that tested
for correlations between (1) genotype ofGWASmarker(s), (2) log2-
transformed RNA-seq expression levels across six developing
kernel stages of the NAM parents for all genes in a search space
(Supplemental Figure 4, Supplemental Table 1, andSupplemental
Data Set 8), and (3) transformed allelic effect estimates of in-
dividual-trait QTL for each family compared with B73, the first
maize reference genome and common parent of the U.S. maize
NAM population. We initially focused on the 23 unique QTL
whose intervals contained one or more of the 81 a priori genes
(Supplemental Data Set 1) reasoning that they provide a high-
quality set of known targets, which if positively identified in an
interval, could guide application of the approach to intervals that
lacked a priori candidate genes. Based on the narrow search
space defined by LD and GWAS signals in combination with the
triangulation data sets, eight a priori genes were determined to
underlie a unique QTL (Figure 2; Supplemental Figure 5). These
include three genes involved in prenyl group biosynthesis, two in
aromatic head group biosynthesis, and three core tocochro-
manol pathway enzymes (Figures 1 and 3).

The Role of a Priori Pathway Genes

The prenyl diphosphates for tocochromanol biosynthesis are
made using five-carbon building blocks from the plastidic IPP
pathway (eight activities encoded by 15 genes in maize). Only
two IPP pathway genes were found to underlie QTL; both en-
code 1-deoxy-D-xylulose-5-phosphate synthase, the first and
committed step of the pathway. dxs2 affected five traits (2.5–
5.7% PVE), and dxs3 was specific for PC-8 (2.6% PVE), but
unexpectedly, neither was associated with tocopherol traits.
Allelic effect estimates and the expression ofdxs2, but notdxs3,
were strongly correlated from mid-grain development onward,
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indicating dxs2 is an expression QTL (eQTL; Figures 2 and 3).
The maize genome encodes 11 prenyl synthases capable of
producing phytyl-DP, GGDP, and solanesyl-DP for the bio-
synthesis of tocopherols, tocotrienols, and PC-8, respectively,
but only one locus, solanesyl-DP synthase (sds), was identified
in this study. SDS produces the prenyl tail group for PC-8 and
affected PC-8 and two other traits, all with small PVEs. Taken
together, these findings indicate that dxs2 and dxs3 function in the
primary steps controlling provision of IPP for the biosynthesis of
tocotrienol and PC-8 prenyl groups, but surprisingly not for to-
copherol prenyl groups.

The aromatic head group for all tocochromanols, HGA, is an
intermediate in tyrosinemetabolism, and two genes in this pathway
were identified as underlying QTL. p-Hydroxyphenylpyruvate
dioxgenase1 (hppd1) showed association with eight traits, with
PVEs for tocotrienol traits (7.9–10.7% for dT3, gT3, and ST3)
being much higher than those for the corresponding tocopherol
traits. Also identified, with smaller PVEs for aT3 and ST3 only, was
arogenate dehydrogenase2 (arodeH2); the encoded enzyme carries
out the oxidative decarboxylation of L-arogenate to L-tyrosine,
which in oneadditional enzymatic step is converted toHPPD, the
substrate forhppd1. Thus, these twogenesare the key regulated

Table 1. Sample Sizes, Ranges, and Heritabilities for Tocochromanol Traits

Trait No. Lines

BLUEs Heritabilities

Median SDa Rangeb Estimate SEc

a-Tocopherol (aT) 4786 8.68 5.22 22.97–33.19 0.82 0.01
d-Tocopherol (dT) 4724 1.43 1.71 21.74–10.05 0.71 0.02
g-Tocopherol (gT) 4789 40.08 19.63 22.78–128.49 0.75 0.02
Total tocopherols (ST) 4790 51.97 22.30 1.50–153.19 0.72 0.02
a-Tocotrienol (aT3) 4784 10.15 4.18 27.62–28.61 0.74 0.02
d-Tocotrienol (dT3) 4689 0.76 1.15 20.86–7.86 0.89 0.01
g-Tocotrienol (gT3) 4770 18.49 11.69 212.23–73.86 0.85 0.01
Total tocotrienols (ST3) 4765 28.91 13.87 210.33–93.83 0.82 0.02
Total tocochromanols (STT3) 4779 86.14 28.88 13.96–221.78 0.76 0.02
Plastochromanol-8 (PC-8) 4787 1.06 0.29 0.05–2.38 0.18 0.02

Medians and ranges (in mg g21 grain) for untransformed BLUEs of 10 tocochromanol grain traits evaluated in the U.S. maize NAM population and
estimated heritability on a line-mean basis across 2 years.
a
SD of the BLUEs.

bNegative BLUE values are a product of the statistical analysis. Specifically, it is possible for BLUEs to equal any value from 2∞ to +∞.
c
SE of the heritability estimate.

Table 2. Genetic Association Results for Tocochromanol Traits

Trait
No. of
JL-QTL

Median Size (SD) of
a = 0.01 JL-QTL Support
Interval (Mb)

No. of JL-QTL Intervals Containing
a Priori Genes

No. of GWAS-Associated Variants in
JL-QTL Intervalsa

Maximum
RMIP

a-Tocopherol (aT) 13 4.17 (13.38) 4 57 0.98
d-Tocopherol (dT) 18 3.36 (16.84) 7 65 0.92
g-Tocopherol (gT) 21 7.21 (22.64) 10 72 0.95
Total tocopherols

(ST)
18 8.00 (21.48) 8 58 0.90

a-Tocotrienol
(aT3)

17 4.65 (14.76) 4 49 0.92

d-Tocotrienol
(dT3)

21 5.74 (22.20) 7 68 0.91

g-Tocotrienol
(gT3)

14 8.35 (31.01) 8 52 0.98

Total tocotrienols
(ST3)

12 15.47 (24.02) 8 49 0.98

Total
tocochromanols
(STT3)

20 6.05 (21.32) 6 95 0.70

Plastochromanol-
8 (PC-8)

8 5.05 (21.37) 4 40 0.66

JL-QTL Total 162 5.90 (21.43) 66 605

Summary of JL-QTL and GWAS variants identified for 10 tocochromanol grain traits evaluated in the U.S. maize NAM population.
aGWAS variants residing within JL-QTL support intervals for each trait that exhibited an RMIP of 0.05 or greater.
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Figure 2. Master Summaries for Selected Identified Genes.

Marker shapes correspond to trait class: circles, tocopherols; triangles, tocotrienols; squares, total tocochromanols, and diamonds, PC-8. Marker colors
indicate compound type: yellow, alpha (a); orange, delta (d); cyan, gamma (g); purple, PC-8; brown, summed traits (S). Gene names are as they appear in
Figure 3. Left panels: Directional gene models are depicted as black arrows and the identified gene as a green arrow. Lines with trait names above gene
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steps for producing the aromatic head group of individual and
total tocochromanols that accumulate in mature maize grain.
Two other loci of relevance previously found to be weakly as-
sociatedwith tocochromanol traits in amaize inbred association
panel (Lipka et al., 2013), vte1 and one of seven prephenate
dehydratases (GRMZM2G437912), were not detected in this
study. vte1 was present in multiple JL intervals in the same re-
combination-suppressed pericentromeric region as hppd1, but
signals specific to vte1 could not be resolved due to long-range
LD. Prephenate dehydratase association signalswere extremely
weak in the prior study (Lipka et al., 2013), and this gene was not
detected in NAM JL-GWAS.

The three remainingapriori genes identified in this studyencode
the core tocochromanol pathway enzymes, HGGT1, VTE4, and
VTE3. HGGT1 is a prenyl transferase that condenses HGA and
GGDP for the biosynthesis of all tocotrienols and had large PVEs
for tocotrienols and moderate PVEs for tocopherols (Figure 3),
a result consistent with its kinetic preference for GGDP over
phytyl-DP (Yang et al., 2011). hggt1 was a strong eQTL, i.e.,
expressionQTL,meaning that the contribution of thisQTL to trait
variation is significantly associated with variation in expression
of the identified gene, through all developing kernel stages
analyzed. This gene is strongly expressed in endosperm, the
major site of tocotrienol accumulation, and showed little to no
expression in other tissues, as also reported for the genes en-
codingHGGT in riceandbarley (Hordeumvulgare) (Cahoonet al.,

2003). Consistent with this expression pattern, 83% of the
tocochromanols in endosperm of 30 d after pollination (DAP)
seed of NAM parents were tocotrienols, while only 2.5% were
tocotrienols in embryos (Supplemental Data Set 9). Notably,
HGGT was found to have the largest PVEs for three traits,
;40% for gT3 and ST3 and 24% for dT3, suggesting that this
locus is indeed the key player for tocotrienol traits, with the
exception of aT3. VTE4 catalyzes the final step in aT and aT3
biosynthesis and had the largest PVE for these traits at 48.2%
and 32.0%, respectively. This gene was an eQTL with partic-
ularly strong correlations with aT allelic effects. These effects
spanned a range of 11.58 mg/g, suggesting that vte4 is key for
increasing vitamin E levels, a finding concordant with the large
PVEs and clear GWAS results obtained for vte4 in this and
previous studies (Li et al., 2012; Lipka et al., 2013). The final
gene, vte3, encodes amethyltransferase at the branchpoint for
d- and g-tocochromanols andwas the highest-PVE a priori QTL
for dT at 8.2%, with smaller PVEs for four other traits.

Novel Large-Effect Loci Control Total Tocopherol and
Vitamin E Accumulation

These eight identified a priori genes guided the application of our
approach for gene-level resolution in the remaining 44QTL, which
definenovel loci affecting tocochromanol traits inmaizegrain. Like
the identified a priori genes, for a gene to be identified in these

Figure 2. (continued).

models indicate RMIP of significant GWAShits6 100 kb of the peak RMIP variant. Lines below genemodels indicate pairwise LD (r2) of eachGWASvariant
with thepeakRMIPvariant (darkblue line). Theblue ribbondepicts thehighest LD,per 200-bpwindow, to thepeakRMIPvariantwhile black ribbons indicate
the density of variants tested in GWAS in the 200-bpwindow (log2 scale). Darker colors correspond to higher values. Right panels: Correlations (r) between
JL-QTL allelic effect estimates and expression of the identified gene across six developing kernel time points. Significant correlations are indicated by trait
abbreviations above the respective time point. Traits with both JL andGWASassociations appear in black text to the right of the graph and have solid trend
lines and symbols, while those with only JL associations are in gray with dashed trend lines and open symbols.

Figure 3. Percent PVE by a Priori and Novel Causal Genes Underlying JL-QTL.

aeQTL indicates significant correlations betweenexpression values and JL-QTL allelic effect estimates atmore than two timepoints for at least one trait.
bBlue shading corresponds to range of PVEs for JL-QTL, with darker blue indicating higher PVEs. cColor coding indicates QTL predominantly affects
a trait class (having at least two-thirds of summed PVE).
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44 QTL intervals, it must meet at least two of three criteria: have
at least onesignificantGWASvariantwithin6100kbof thegene,
at least two significant FPKM x JL allelic effect estimate cor-
relations, andacompellingbiological function for involvement in
tocochromanol biosynthesis/accumulation. Applying these
criteria to the 44 remaining QTL resulted in the identification of
six genes not known to affect tocochromanol traits in any plant
system that fall into three categories: metabolism, metabolite
transport/storage, and transcriptional regulation.

Both metabolic genes identified for QTL5 and QTL24 encode
homologs of protochlorophyllide reductase (POR), a highly
regulated step in chlorophyll biosynthesis (Figure 4C). Notably,
por2 (QTL24) had thehighestPVEs in thepanel forgT, dT,ST, and
STT3 and por1 (QTL5) the second highest PVEs for gT and ST
(Figure 3); together, they account for the largest allelic effects
observed (well beyond those of a priori genes) for tocopherol
traits (Figure 3; Supplemental Figure 6). The twopor loci were the
most robust eQTL in this study and had the largest epistatic

interactions (Figure 5), contributing2.2 to 4.0%additional PVE to
the four tocopherol traits.
The strong and specific association of two chlorophyll bio-

synthetic geneswith tocopherolswasunexpected for amonocot
seed like maize that lacks obvious green coloration during de-
velopment and is chlorophyll-deficient at physiological maturity
(i.e., in dry grain). To assess whether, despite the lack of green
coloration in developing grain, chlorophylls might still be pres-
ent, we dissected embryos and endosperm from the NAM
parents at 16, 20, 24, 30, and 36 DAP to quantify the levels of
tocochromanols and four major classes of chlorophyll metab-
olites: chlorophylls a andb, chlorophyllides a andb, pheophytins
a and b, and pheophorbides a and b (Supplemental Data Set 9).
Embryo tocochromanols are composed of >90% tocopherols,
whose absolute levels reflect the extreme diversity of NAM
parents, varying by 10- to 100-fold at each developmental stage
(Supplemental Figure 7). Surprisingly, developing embryos also
contain extremely low, but detectable, levels of chlorophylls

Figure 4. Chlorophyll Metabolism in Relation to Phytol Generation and Tocopherol Biosynthesis in Developing Maize Embryos and Endosperm.

(A) Correlation of chlorophyll metabolites and total tocopherol concentrations (pmol g21).
(B) Compound concentration means (log scale) of NAM parents.
(C)Overview of chlorophyll biosynthesis and degradation and phytol generation inmaize embryos and endospermwith the protochlorophyllide reductase
expressionQTL indicated in red. Compoundsmeasured are in bold black text with the four detectable chlorophyll metabolites in embryos (only chlorophyll
awas measurable in endosperm) highlighted in boxes colored as in (A) and (B). Other relevant compounds are in gray and relevant enzymes in black bold
italics. Arrow widths represent mean gene expression (FPKM) across embryo development in B73. The black dashed arrows show the proposed route for
generating phytol for tocopherol biosynthesis in maize embryos from chlorophyll biosynthetic intermediates, instead of by chlorophyll degradation.
Compound abbreviations: ƩT, total tocopherols = aT+dT+gT; Chlide: chlorophyllide; Chl, chlorophyll; Pheo, pheophytin; Protochlide, protochlorophyllide;
Phytyl-DP, phytyl diphosphate; GGDP, geranylgeranyl diphosphate.
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a and b, chlorophyllide a, and pheophytin a (Figure 4B), while
the other four chlorophyll metabolites assessed were below
detection in all samples. Though detectable, total chlorophyll
metabolite levels are;500 times lower in embryos than in leaves
(Ma et al., 2008), and 100- to 1000-fold lower than embryo toco-
pherols (Figure 4B). The correlation of total tocopherols with
chlorophyll a, chlorophyll b, and chlorophyllide a was strong at
16 DAP (r = 0.71–0.76); chlorophyll a correlations with total to-
copherols peaked at r=0.93 at 20DAP, andwith the exception of
30 DAP remained above r = 0.7. Correlations with chlorophyllide
a and chlorophyll b with total tocopherols gradually decreased
to r = 0.48 and r = 0.36, respectively, at 30 DAP, after which
chlorophyll b correlation increased. Pheophytin a is a key in-
termediate and metabolite marker for the chlorophyll degradation
pathway in senescing leaves (Schelbert et al., 2009; Hörtensteiner
andKräutler, 2011;Hörtensteiner, 2013),where it providesphytol for
senescence-associated tocopherol biosynthesis (Schelbert et al.,
2009; Zhang et al., 2014; Vom Dorp et al., 2015), but pheophytin
a only showedweak correlationswith total tocopherols at 16 and
20 DAP (r = 0.23 and 0.31, respectively) and was negatively

correlated at later developmental stages. Tocopherols accu-
mulated in endosperm to levels <2% that in embryos, and en-
dosperm chlorophyll metabolite levels were similarly reduced,
with only chlorophyll a being consistently above the limits of
detection (Supplemental Data Set 9; Figure 4B). Nonetheless,
correlations of chlorophyll awith total tocopherols in endosperm
ranged from r = 0.50 to 0.74 at three stages of development
(Figure 4A).
A second group of novel genes has predicted roles in the

transport and storage of lipophilic molecules. The identified gene
inQTL10, affecting five traits, is oneof 12genes inmaize encoding
plastid-localized fibrillins, structural proteins that bind hydro-
phobic molecules and play various roles in their biosynthesis and
accumulation in other systems (Deruère et al., 1994; Kim et al.,
2015). Fibrillins are prominent components of plastoglobules
(Ytterberg et al., 2006; Bréhélin et al., 2007), subcompartments of
the chloroplast that also contain tocochromanols, carotenoids,
lipids, and various biosynthetic enzymes including tocopherol
cyclase.Thegeneticassociationofafibrillingene familymemberwith
tocochromanol content is thus consistent with prior biochemical

Figure 5. Genome-Wide Distribution of Tocochromanol JL-QTL and Their Pairwise Epistatic Interactions.

From the outermost ring to the center: Black arcs show chromosomes labeled in 20-Mb increments, with small open circles marking centromeres. Gene
names are as they appear in Figure 3 and are adjacent to purple and green capsules that indicate a priori and novel gene classes, respectively. Radial, light
blue lines show the positions of peak markers for the 162 individual-trait QTL. Lines linking markers show significant epistatic (additive 3 additive) in-
teractions, with line thickness proportional to phenotypic variance explained by the interaction term (which range from 0.3% to 4.0%). Links are colored by
trait class for the interaction: yellow, tocopherols (T); orange, tocotrienols (T3); black, total tocochromanols (STT3).
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knowledge that other members of the fibrillin family bind hy-
drophobic metabolites (e.g., carotenoids). QTL30 also affected
multiple traits, and its identified gene encodes a cytosolic
glycol(neutral)lipid transfer protein that could participate in the
transport of tocochromanols to oil bodies for storage. Finally,
QTL6 only affectsaT3, and its underlying gene encodes a type of
SNARE protein predicted to be plastid-targeted and whose
function is consistent with a role in vesicular transport. Of these
three genes, only QTL10 was an eQTL. The final gene identified,
in QTL39, was an eQTL that affected aT3 and encodes a pre-
dicted transcription factor with plant homeodomain zinc finger
domains.

DISCUSSION

This study, a comprehensive assessment of natural variation in
vitaminE levels inmaize grain, provides important insights into the
control of tocochromanol content and composition in a global
staple crop, with major implications for human nutrition. In total,
52 unique QTL were identified with PVEs as large as 48.2%. We
resolved 14 QTL to the gene level using an approach integrating
JL-QTL effect estimates, localization of GWAS signals, and RNA-
seq data from six stages of developing kernels for the NAM pa-
rental genotypes. Only two of the 14 genes identified in this study
had been previously associated with natural variation for toco-
chromanols inmaizegrain (Li et al., 2012; Lipka et al., 2013). These
14 genes included seven of the nine intervals with largest PVEs
(Figure 3; Supplemental Table 2) and in an additive model ex-
plained 56 to 93%of phenotypic variation attributed toQTL for the
traitsanalyzed in thisstudy (Supplemental Figure8). Thisdegreeof
gene-level resolution of JL-GWAS signals was much greater than
in earlier NAM studies (Buckler et al., 2009; Brown et al., 2011;
Kumpet al., 2011; Poland et al., 2011; Tian et al., 2011;Cook et al.,
2012; Peiffer et al., 2014; Wallace et al., 2014; Yan et al., 2015;
Zhang et al., 2015) due to three main factors: clear molecular
evidence of functional involvement through the incorporation of
RNA-seq data, increased marker density provided by the addi-
tional 27.4 million HapMap v2 variants, and the tractable genetic
architecture of tocochromanol traits (oligogenic and highly heri-
table). Eight of the 14 identified genes were on a list of 81 a priori
maize candidate genes generated based on prior elucidation of
precursor and core tocochromanol pathways, primarily in Arabi-
dopsis, while the remaining six encode functions not previously
demonstrated to affect tocochromanols in any plant species de-
spite over two decades of molecular genetic studies (Shintani and
DellaPenna, 1998; Savidge et al., 2002; Cahoon et al., 2003; Cheng
et al., 2003; Sattler et al., 2004; Valentin et al., 2006; DellaPennaand
Mène-Saffrané, 2011). With the exception of HGGT, which is only
present in the monocot lineage, and the plant homeodomain
transcription factor, all other genes identified in this study have
clear homologs inmajormonocot and dicot crop species, providing
clear targets to assess in other crops for potential association with
desired tocochromanol traits.

Inmost cases, the eight a priori genes affected tocochromanol
traits in ways consistent with the known biochemical activities of
their encoded enzymes (Shintani andDellaPenna, 1998; Cahoon
et al., 2003; Cheng et al., 2003; Collakova andDellaPenna, 2003;

Van Eenennaam et al., 2003; Karunanandaa et al., 2005; Kumar
et al., 2005; Tang et al., 2006; Hunter and Cahoon, 2007;
DellaPenna and Mène-Saffrané, 2011). For example, the two
pathway methyltransferases, vte3 and vte4 (Shintani and
DellaPenna, 1998; Cheng et al., 2003; Van Eenennaam et al.,
2003), were key for determining the degree ofmethylation, and
hence, the types of tocochromanols accumulated (i.e.,a, g, or d),
but had no impact on total tocochromanol levels. Similarly, the
aromatic head group for all tocochromanols, HGA, is produced
byhppd1 (Norris et al., 1998;Rippert et al., 2004;DellaPennaand
Mène-Saffrané, 2011), which affected nearly every tocochro-
manol trait, though with larger contributions for tocotrienols. As
a group, the eight a priori genes also highlight major differences
in the genetic control of tocopherol versus tocotrienol traits in
maize grain, particularly in the generation and coupling of their
prenyl tail groups toHGA.A single gene for the first and regulated
step of the plastidic IPP pathway, dxs2, was strongly and
specifically associated with tocotrienol traits, but neither it nor
any other IPP pathway gene was associated with tocopherol
traits. HGGT, the committed enzyme for tocotrienol biosynthesis,
showed extremely strong tocotrienol associations and limited
associations with tocopherol traits, a result consistent with its
overexpression conferring high levels of tocotrienol production
in numerous plant tissues and systems (Cahoon et al., 2003;
DellaPenna and Mène-Saffrané, 2011; Zhang et al., 2013;
Tanaka et al., 2015) and with the enzyme preferentially con-
densing HGA with GGDP (Yang et al., 2011). In contrast, the
corresponding enzyme that condenses HGA with phytyl-DP
for tocopherol biosynthesis, homogentisate phytyltransferase
(HPT), lacked association with tocopherol traits. This was un-
expected as like hggt overexpression, hpt overexpression in-
creases total tocopherol content in a number of dicot plant
systems and tissues (Savidge et al., 2002; Collakova and
DellaPenna, 2003; Karunanandaa et al., 2005; Lu et al., 2013).
While the genetic control of total tocotrienol content in maize
grain is relatively simple, with three, large-effect a priori genes
(dxs2, hppd1, and hggt1) collectively accounting for 81% of
trait variation, a priori genes account for only 8% of variation in
total tocopherol content. Instead, the trait is controlled primarily
by novel loci (Supplemental Figure 8), indicating that in maize
grain and likely other monocot seed, a fundamentally different
process regulates biosynthetic flux to total tocopherols.
Key insight into the regulation of tocopherol biosynthesis in

maize grain comes from our finding that twomajor determinants
of tocopherol natural variation in maize grain are homologs
encoding POR, which carries out a key reaction in chlorophyll
biosynthesis. The two identifiedpor genes accounted for 46%of
total tocopherol variation attributed to QTL in an additive model
(Supplemental Figure 8), the largest PVEs for dT, gT, andST, and
a substantial pairwise epistatic effect that is roughly one-third
the dynamic range of their additive effects. The key role of
protochlorophyllide reductases in tocopherol biosynthesis in
maize grain was especially surprising given that this tissue, like
most monocot seed, is nonphotosynthetic and lacks any ob-
vious green coloration.
Our identification of two chlorophyll biosynthetic genes (por

homologs) as major determinants of tocopherol content in
maize grain and supporting metabolite and expression data in
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developing embryo are consistent with chlorophyll degra-
dation playing a minor role at best in tocopherol biosynthesis
in nonphotosynthetic tissues likemaize grain. First, of the four
chlorophyll metabolites detectable in developing embryos,
pheophytin a, a committed intermediate and metabolic marker
for chlorophyll degradation, had the lowest correlation with total
tocopherol levels (Figure 4A), opposite of what would be ex-
pected if chlorophyll degradation provided themajority of phytol
for tocopherol biosynthesis. Instead, chlorophylls a and b and
chlorophyllide a, late-stage intermediates in chlorophyll bio-
synthesis, were strongly and positively correlated with total
tocopherol levels throughout embryo development. Addition-
ally, in developing maize embryos (i.e., 30 DAP), the chlorophyll:
tocopherolmolar ratio is;1:800, andasonly a singlemolecule of
phytol is released for each chlorophyll degraded, degradation
would only provide a trace of the phytol needed for tocopherol
biosynthesis, unless massive flux to degradation occurs. While
we cannot eliminate this possibility, it seems unlikely, as ex-
pression of chlorophyll biosynthetic enzymes prior to POR is
extremely low (e.g., 0.1–1% that in leaves; Supplemental Data
Set 10) and consistent with the low levels of chlorophyll me-
tabolites in developing embryos (;0.3%of leaf levels;Ma et al.,
2008). In contrast, the two enzymes downstream of POR,
chlorophyll synthase (which esterifiesGGDP to chlorophyllides
a and b) and geranylgeranyl reductase (which reduces the
geranylgeranylated intermediates to chlorophylls a and b) are
the most highly expressed steps of the pathway in embryos
(e.g., 9–18% that in leaves; Supplemental Data Set 10). This
suggests that their reactions are strongly favored, which is
consistent with chlorophyll a levels being 10- to 100-fold higher
than those of other chlorophyll metabolites. Taken together,
these findings suggest that aspects of chlorophyll biosynthesis,
likely a cycle involving repeated removal of phytol from chlorophyll
a followed by efficient reesterification of the resulting chlorophyllides
with GGDP and reduction of the geranylgeranylated inter-
mediates to (“phytyl”)-chlorophylls, generate the large amounts
of phytol needed for tocopherol biosynthesis in maize embryos
(Figure 4C).

Unlike maize grain, developing Arabidopsis seed are green,
photosynthetic, and contain high levels of tocopherol at a 2- to
4-fold molar excess to chlorophylls (Zhang et al., 2014), while in
unstressed leaves, tocopherol levels are much lower and
chlorophyll is oftenat 20- to50-foldmolar excess to tocopherols
(Collakova and DellaPenna, 2003). As each mole of chlorophyll
contains one mole of esterified phytol, bulk chlorophyll deg-
radation has long been proposed as the source of phytol for
tocopherol biosynthesis in such green, photosynthetic tissues
(Rise et al., 1989; Chrost et al., 1999; Valentin et al., 2006). The
chlorophyll degradation pathway has recently been elucidated
inArabidopsis (Schelbert et al., 2009;Hörtensteiner andKräutler,
2011; Hörtensteiner, 2013) (Figure 4C), and the phytol released
from pheophytin a by pheophytinase could be esterified to fatty
acids to yield fatty acid phytyl esters or phosphorylated by VTE5
and VTE6 to yield phytyl-DP (Valentin et al., 2006; Tanaka et al.,
2010; DellaPennaandMène-Saffrané, 2011; Lippold et al., 2012;
Zhang et al., 2014; Vom Dorp et al., 2015) (Figure 4C). This
latter route clearly provides phytyl-DP for the large amounts of
tocopherol synthesized by senescing Arabidopsis leaves, as

mutation of the pheophytinase gene eliminates both chlorophyll
degradation and the senescence-associated increases in to-
copherol and fatty acid phytyl ester levels (Schelbert et al.,
2009; Zhang et al., 2014; Vom Dorp et al., 2015). If flux through
this chlorophyll degradation pathway provided the majority of
phytol for tocopherol biosynthesis in other tissues and leaf
development stages, one would expect a similarly severe im-
pact on tocopherol levels in these tissues. However, in non-
senescing leaves and mature seed, tocopherol content in the
pheophytinase mutant was unchanged (Zhang et al., 2014).
Chlorophyllases can also remove phytol from chlorophyll a and
havebeenproposed as an alternate route for generating phytol,
but mutations disrupting the two Arabidopsis chlorophyllases,
singly or in combination with the pheophytinase mutant, again
had no effect on seed tocopherol levels (Zhang et al., 2014).
These combined data indicate that though phytol is released by
chlorophyll degradation late in Arabidopsis seed maturation,
this phytol contributes little to tocopherol biosynthesis in de-
veloping seed, and instead phytol for tocopherol biosynthesis
in seed and nonsenescing leaves of Arabidopsis is provided
from another source. Tocopherol biosynthesis from this al-
ternative source of phytol is still dependent on VTE5 (phytol
kinase activity), as in vte5 mutants, tocopherol levels are re-
duced by 80% and leaf tocopherol contents by 65% (Valentin
et al., 2006). We suggest that like maize grain, Arabidopsis
operates a chlorophyll-based cycle for generating phytol for
tocopherol biosynthesis in most tissues and developmental
stages that is separate from the bulk chlorophyll pool.
In addition to the por loci, the other novel genes identified in

this study provide important insights into the accumulation of
tocochromanols in plants, but especially for tocopherols, which
have higher vitamin E activities than tocotrienols (Kamal-Eldin
and Appelqvist, 1996; DellaPenna and Mène-Saffrané, 2011).
For example, we identified proteins with transport and storage
functions that areassociatedwith tocochromanols at thegenetic
level. Three of the novel loci encode such functions, including
two, a fibrillin and a lipid transfer protein, affecting multiple
tocopherol and tocotrienol traits. Fibrillins are encoded by
moderate-sized gene families, with individual members having
diverse functions ranging from storage of xanthophylls in fruit
and flower chromoplasts to interaction with enzymes involved
in plastoquinone biosynthesis (Deruère et al., 1994; Singh and
McNellis, 2011; Kim et al., 2015). Tocopherolswere reported as
minor constituents of fibrillins isolated from red bell pepper
(Capsicum annuum) fruit (Deruère et al., 1994), and several
members localize to plastoglobuli along with various lipid-soluble
compounds and enzymes, including tocopherol cyclase (Ytterberg
et al., 2006; Bréhélin et al., 2007). The association of multiple
tocochromanol traits with a single member of the maize fibrillin
family (GRMZM2G031028) suggests that the encoded protein
specializes in tocochromanol storage in grain. Finally, lipid
transferproteinsareencodedby largegene families inplants and
have likewise been implicated in the movement of various
lipophilic compounds between membranes. Here, we show
that GRMZM2G060870 is a lipid transfer protein implicated in
the transport of tocochromanols. Overexpression and knock-
out studies of a priori genes in other systems have yielded
important insight into their roles in tocochromanol biosynthesis
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(DellaPenna and Mène-Saffrané, 2011). Analogous experi-
ments with the six novel genes identified in this study would
provide additional insights into their roles and functions.

Allelic variation at the 14 genes identified in this study, re-
sponsible for 56 to 93% of phenotypic variation attributed to QTL
for tocochromanols in maize grain, establishes a near-complete
foundation for the genetic improvement of vitamin E and non-
vitamin E tocochromanol levels in thismajor food crop and likely in
seed of the other major cereals, which are also nongreen, non-
photosynthetic tissues that synthesize tocochromanols. That
a moderate number of genes exerts large control over headgroup
and tail biosynthesis and the core tocochromanol pathway itself
holds great promise for both breeding and engineering of
tocochromanols in staple crops. Because tocopherols and
tocotrienols are largely under independent genetic control by
seven major-effect loci, genomics-assisted breeding approaches
can target total tocotrienols (hggt1, hppd1, and dxs2), total toco-
pherols (two por homologs), or vitamin E content (vte3 and vte4),
separately or in combinatorial fashion. It remains an open question
whether the levels of other vitamins and essential nutrients in
major crop species are under similarly tractable control. If true,
this would greatly accelerate global efforts to simultaneously
enhance and balance the levels of multiple essential micro-
nutrients in staple crops to benefit human health.

METHODS

Field Environments and Plant Materials for Genetic Mapping

The genetic and genomic approaches used to design and construct the
maize (Zea mays) NAM population have been previously described (Yu
et al., 2008; Buckler et al., 2009; McMullen et al., 2009). In brief, 25 families
of 200 RILs per family were generated by crossingmaize inbred line B73 in
a reference design to 25 other diverse inbred lines. These 25NAM families,
the intermated B73 3 Mo17 (IBM) family (Lee et al., 2002), and an asso-
ciation mapping panel of 281 diverse inbred lines (Flint-Garcia et al., 2005)
were evaluated at the Purdue University Agronomy Center for Research
and Education in West Lafayette, IN, under standard agronomic practices
in the summers of 2009 and 2010. The experimental field design has been
previouslydescribed (Chandler et al., 2013). Inbrief, asetsdesignwasused
in each of the two environments, with each set including all lines of a family
or the association panel. Each family set was arranged in a 10 3 20 in-
complete block a-lattice design, and each incomplete block was aug-
mented by the addition of both parental lines as checks. The association
panel had a 14 3 20 incomplete block a-lattice design, with each in-
complete block augmented by the inclusion of maize inbred lines B73 and
Mo17 as checks. A single replicate of the entire experiment of 5481 lines
from the NAM and IBM families as well as the 281-member association
panel plus repeated check lines was grown in each environment. An ex-
perimental unit consisted of a single line planted in a one-row plot that was
3.05min length,withanaverageof10plantsperplot. Inbothenvironments,
a minimum of four plants within a plot was self-pollinated by hand. Self-
pollinatedearswereharvestedatphysiologicalmaturity anddried toagrain
moisture content of;15%. Afterwards, the ears of each plot were shelled
and bulked to generate a representative, composite grain sample for
quantifying tocochromanol levels.

Phenotypic Data Analysis

Tocochromanols were extracted from ;50 ground kernels for each
plot and quantified by HPLC and fluorometry as previously described

(Lipka et al., 2013). We assessed three types of tocochromanols
based on HPLC data passing internal quality control measures that
were collected on 10,306 grain samples from 4862 NAM and 198 IBM
RILs, as well as the repeated parental check lines. The 10 evaluated
tocopherol, tocotrienol, and plastochromanol phenotypes were as
follows: a-tocopherol (aT), d-tocopherol (dT), g-tocopherol (gT),
a-tocotrienol (aT3), d-tocotrienol (dT3), g-tocotrienol (gT3), total to-
copherols (aT + dT + gT), total tocotrienols (aT3 + dT3 + gT3), total
tocochromanols (total tocopherols + total tocotrienols), and PC-8
in mg g21 seed. When the level of a tocochromanol compound for a
grain sample was below the minimum detection limit of HPLC, a mg g21

value was approximated for the sample by assigning a uniform random
variable ranging from 0 to the minimum HPLC detection value for that
given compoundwithin a family for each environment. The IBMRILswere
not included in the JL analysis andGWASof the 10 tocochromanol traits,
as they were produced through intermating and thus exhibit a differential
recombination rate relative to NAM RILs. However, the IBM family was
still included in the following mixed linear model analysis along with the
25 NAM families to provide additional information on genotype-by-
environment variation and within-environment spatial variation.

To screen the 10 traits for phenotypic outliers, we initially performed
mixed linear model selection with custom Java code invoking ASReml-W
version 3.0 (Gilmour et al., 2009) for each trait that followed the same steps
of the two-stage model fitting process previously described (Peiffer et al.,
2014). In brief, in the first stage, mixed linear models separately fit for each
of the two environments included a fixed effect for the grand mean and
random effects including the genotypic effects of family and RIL within
family, a laboratory effect for HPLC autosampler plate, and spatial effects
for field, set within field, and block within set within field. Genetic, HPLC
plate, and spatial effects were not confounded because the repeated
parental check lines were considered to be from the association panel.
Thus, the experimental design allowed for the estimation of genetic effects
separate from the laboratory and spatial effects. A first-order autoregressive
(AR1 3 AR1) correlation structure was also fitted to account for spatial
variation in the direction of rows and columns among plots within each
environment. For each environment, a backward elimination procedure
based on the likelihood ratio test (Littell et al., 2006) was conducted to
remove nongenetic random effects and AR1 3 AR1 error structures from
the model that were not significant (a = 0.05).

In the second stage, a single mixed linear model across both envi-
ronments was fitted that included and nested the significant laboratory
and spatial effects from the individual first stage models. Additional
random effects entering the multienvironment model included environ-
ment, the interaction between family and environment, and the in-
teraction between RIL within family and environment. Additionally, the
significant AR1 3 AR1 error structures within each environment were
included in themodel. From the final fitted model for each trait, influential
phenotypic outliersweredetectedusing theDFFITScriterion (Neter et al.,
1996; Belsley et al., 2005), and observations were deleted if they ex-
ceeded a conservative DFFITS threshold previously suggested for this
experimental design of 23 23

ffiffiffiffi
p9
n

q
where p9 is model degrees of freedom

(df) + 1 and n the sample size (Hung et al., 2012) (Supplemental Data Sets
2 and 11 and Supplemental File 1).

Once influential outliers were removed, the two-stage model fitting
process was conducted again with minor modifications to estimate
a BLUE for each RIL across environments. In this implementation, the
genotypic effects of family and RIL within family were fitted as fixed
effects. Additionally, unique error varianceswere not separatelymodeled
for each environment when fitting the interaction between family and
environment and between RIL within family and environment. To obtain
variance component estimates, all terms except for the grandmeanwere
then fitted as random effects. These variance components were used to
estimate heritability on a line-mean basis ðĥ2l Þ across only the 25 NAM
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families (Hung et al., 2012), and the standard errors of these estimates
were approximated using the delta method (Holland et al., 2003).

Prior to conducting JL mapping of QTL in the NAM population, the
BLUEs of each trait were screened to detect any remaining statistical
outliers using PROC MIXED in SAS version 9.3 (SAS Institute). Specifi-
cally, the Studentized deleted residuals (Kutner et al., 2004) were ex-
amined, which were obtained from a parsimonious linear model fitted
with fixed effects for the grand mean and a single randomly sampled,
representative SNP marker (PZA02014.3) from the NAM genetic linkage
map of 1106 SNPmarkers (McMullen et al., 2009). For each trait, a BLUE
of each RIL was considered an outlier and removed if it generated
aStudentizeddeleted residual,withn –p –1df, that hadanabsolute value
greater than the Bonferroni critical value of t(1 – a/2n; n – p – 1), where
t denotes the t-distribution, a the significance level of 0.05, n the sample
size of 5460 RILs, and p the number of predictor variables (Supplemental
Data Sets 2 and 11, Supplemental Figure 9, and Supplemental File 2).
Finally, for the trait dT3, a single RIL was removed that was seen to exert
unduly high leverage within the trait JL model, particularly upon the in-
clusion of interaction terms in epistasis analyses. The observed inflation
of allelic effect estimates and PVEs was most severe for a JL peak
marker with low alternate allele frequency, as has been previously ob-
served (Rao and Province, 2016).

Next, for each trait, the Box-Cox power transformation (Box and
Cox, 1964) was performed on BLUEs with the aforementioned parsi-
monious model to identify the most appropriate transformation that
corrected for unequal variances and non-normality of error terms. This
process was conducted using PROC TRANSREG in SAS version 9.3
(SAS Institute) and tested lambda values ranging from 22 to +2 in
increments of 0.05 before applying the optimal lambda for each trait. Of
the 10 traits, six had a variable number of RILs (range: 3–258) with
a BLUE of negative value. Negative values were a product of the shift in
location (mean) and scale (SD) of the metabolite trait distributions that
takes place in the generation of BLUEs (Burkschat, 2009). A constant of
the lowest possible integer needed to make all values positive—a re-
quirement of the Box-Cox power transformation—was added to the
BLUEs for a given trait before conducting the transformation pro-
cedure. The constants and Box-Cox lambda values applied for each
trait are provided in Supplemental Table 3.

JL Analysis

A consensus genetic linkagemap comprising 14,772markers and derived
across the 25 NAM families was used for JL analysis. The map was
constructed by scoring 4892 available NAM RILs with a genotyping-by-
sequencingprotocol (Elshire et al., 2011;Glaubitz et al., 2014) and imputing
SNP markers at evenly spaced 0.1-cM intervals following a previously
described procedure (Ogut et al., 2015). Using this consensus map,
a previously described JL analysis procedure (Buckler et al., 2009) was
conducted across the 25 families of the NAM population to identify and
define positions of QTL controlling phenotypic variability of the 10 to-
cochromanol traits. In brief, a joint stepwise regression procedure was
implemented using modified source code in TASSEL version 3.0 (pro-
vided on Github), in which transformed tocochromanol trait BLUEs were
the response variable, the family main effect forced into the model first
was an explanatory variable, and each of the 14,772 possible marker
effects nested within family terms considered for inclusion into the final
model were explanatory variables. The model entry or exit selection
criterion of marker-by-family effects was based on a permutation pro-
cedure, where the transformed BLUEs of each tocochromanol trait were
permuted 1000 times and the entry P value thresholds (from a partial
F-test) were chosen to control the type I error rate at a = 0.05. These
thresholds are listed in Supplemental Table 3. To prevent the simulta-
neous entry andexit of an effect in the samestep, exit thresholdswere set
equal to twice the value of entry thresholds.

Given that strong linkage between these high-density genetic markers
could introduce extensive collinearity among marker genotypes, we
developed an additional model fitting approach to correct for multi-
collinearity and more precisely determine QTL locations and effect
estimates thereafter. For the three tocotrienol compounds, their sum,
and total tocochromanols, at least one pair of peak JL markers (i.e., the
markers in the optimal model determined from stepwise model selec-
tion) exhibited an absolute Pearson correlation coefficient (r) greater
than 0.8 in their SNP genotype states, calculated using the “pearson”
method within the ‘cor’ base function in R. In these cases, the marker
with smaller sum of squares within each pair in the corresponding JL
model was removed. For each of the remaining peak markers in the JL
model for that trait, a rescan procedure was then implemented to test if
any closely adjacent markers were more significantly associated with
the trait than the peak marker identified in stepwise model selection.
Specifically, if a marker on either side was showing, after the multi-
collinearity correction, a larger sum of squares than the original peak
marker, that adjacent marker would replace the original peak marker in
the model. This process was repeated until the peak marker under
consideration showed the highest sum of squares compared with both
of its neighbors, representing a localmaximum.All final peak JLmarkers
following rescan, along with the family term, were then refitted to obtain
a final JLmodel for each trait. Allelic effect estimates of theseQTLwithin
each family were generated by fitting final trait models using the ‘lm’

function within the lme4 package in R, which also tests the significance
of each effect within a family term in two-sided independent t tests. The
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) was
used to control the false discovery rate at 0.05 when identifying po-
tentially significant QTL effects.

For each joint QTL in the final models for all traits, a support interval
(using P value threshold of 0.01) was calculated as previously described
(Tian et al., 2011). Logarithm of the odds scores were calculated using the
‘logLik’base function inR. ThePVEby each jointQTLwas calculated using
previous methods (Li et al., 2011), with some modifications. This modified
methodaccounted forwithin-family variationof allele frequenciesby taking
a weighted average of an allelic effect of a marker based on its allele
frequencywithineach family and thepopulation sizeof that family. Solely to
assess the true magnitude and direction of QTL allelic effects both within
and across NAM families, allelic effect estimates were also generated
using untransformedBLUEs, refitting the family termand final JLmarkers
derived from the transformed BLUE model without further model se-
lection or rescan.

GWAS

For each chromosome and each trait, residuals for conducting a GWAS
wereobtained from the final full JLmodelswith the family termandany joint
QTL from that chromosome removed. The genotypic data set used to
perform theGWAS in theNAMpopulation consistedof 28.9million variants
(SNPs and short indels of 15 or fewer base pairs in length) contained in
HapMap versions 1 and 2, aswell as;0.8million copy number variants, as
previously described (Wallace et al., 2014). To conduct a GWAS for each
trait, these 29.7 million segregating variants were projected onto the NAM
RILsbasedon theirgenotypicdataand thedense0.1-cMresolution linkage
map. Using these projected variants, a forward selection regression
procedure was repeated 100 times for each chromosome. This procedure
subsampled 80% of the RILs from each family without replacement; this
procedure was run separately on chromosome-specific residuals using
the NAM-GWAS plug-in in TASSEL version 4.1.32 (Bradbury et al., 2007)
as previously described (Wallace et al., 2014). For each trait, the sig-
nificance threshold for the entry of a marker in the model was empirically
determined using apermutation procedure run1000 times onchromosome-
specific residuals. The results of permutations were then averaged across
chromosomes (Wallace et al., 2014) to control the genome-wide type I error
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rate at (a = 0.05). The entry thresholds determined from permutations
and used in GWAS are provided in Supplemental Table 3. For each trait
and marker, the RMIP value, defined as the proportion of 100 sub-
samples in which a tested marker was included in the final, forward
selection-derived regression model, was calculated. Only markers
with an RMIP value of 0.05 or greater were further examined in tri-
angulation analyses.

Growth Environments and Plant Materials for RNA-Seq

A total of three biological replications of the NAM founders were planted
on May 10 (rep 1), May 20 (rep 2), and June 1 (rep 3), 2011, at Purdue
University’s Agronomy Center for Research and Education in West
Lafayette, IN, with;15 plants per plot. All plants in each plot were self-
pollinated, and pollination dates were recorded. A single ear from
a given plot was harvested at (each of) 12, 16, 20, 24, 30, and 36 DAP.
Immediately after harvest, whole ears were frozen in liquid nitrogen. The
ears were stored at 280°C until kernels could be removed from the
still-frozen ears, placed in test tubes, and maintained at 280°C.
Kernels from each sample were packed in dry ice and shipped to
Michigan State University, from which 30 kernels were randomly
sampled and bulked across replicates. For the majority of samples,
three biological replicates were available, and 10 seeds were taken
from each. In a small number of instances, two or only one replicate
was available; in these cases, 15 and 30 seeds were taken from the
replicates, respectively.

For root and shoot tissues, seed from the NAM founders were
surface-sterilized and germinated onwet filter paper for 4 to 5 d under
grow lamps at room temperature. Next, three germinated seedlings
were transplanted to 18.93-liter containers with SureMix potting mix
(Michigan Grower Products) and fertilized with 13 Hoagland solu-
tion. Plants were grown in the greenhouse under long-day conditions
for 14 d at 30 to 33°C at which time the plants were removed from pots
and rinsed with water to remove the soil. Roots and shoots were
harvested separately, immediately frozen in liquid nitrogen, and
stored at 280°C until RNA extraction. Equal weights of shoots or
roots from the three individual plants were combined into a single
sample for RNA isolation.

RNA-Seq and Sample Quality Assessment

Frozen samples were ground to a fine powder in liquid nitrogen. Total RNA
from100mgof frozenkernel, shoot, and root tissueswas isolatedusing the
hot borate protocol (Wan andWilkins, 1994) except that aQiagen shredder
column was used to filter the lysate prior to the LiCl precipitation step. To
assess thequality andconcentrationofRNA, sampleswereanalyzedusing
a NanoDrop (Thermo Fisher Scientific) and Bioanalyzer 2100 (Agilent
Technologies).mRNA-seq librarieswere constructed from total RNAusing
the Illumina RNASeq kit following the manufacturer’s instructions. Se-
quencingwasperformedon the IlluminaGAIIx andHiSeq2000 instruments
at the Michigan State University Research Technology Support Facility.
Reads (50–55 nucleotides; 11–140 M reads per sample) were generated
and their quality evaluated using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). A small number of libraries were se-
quenced inpaired-endmode,butall downstreamanalyses treated readsas
single-end.

Identification of SNPs in RNA-Seq Data

ForSNPdetection,RNA-seq readswerecleaned forqualityusingCutadapt
(v 1.4.1) (Martin, 2011). Specifically, Illumina adapter andprimer sequences
were removed (using the –b option), as well as bases at the 39 end that had
a quality score less than 20 and reads that were fewer than 30 bases in
length after cleaning. RNA-seq reads were then aligned to the maize B73

reference genome (AGPv2; http://ftp.maizesequence.org/) using TopHat
(v1.4.1) (Langmead et al., 2009) and SAMTools (v0.1.12a) (Li et al., 2009).
TopHat was run with a minimum and maximum intron size of five and
60,000 bp, respectively. Indel detection was disabled, and only unique
alignments were reported using the -g option; all other options were set to
default. BAMTools (v 1.0.2) (Barnett et al., 2011) was used to calculate
mapping result statistics. The BAM file for each sample was sorted by
leftmost coordinates using the SAMTools sort function (v 0.1.12a) (Li et al.,
2009). This file was then indexed using SAMTools index, and a pileup file
generated using SAMTools pileup with options –Bcf. An unfiltered matrix
file wasmade and filtered to detect SNPs. SNPswere filtered according to
the following requirements: (1) five readsper individual; (2) for anallele to be
called within an individual, it had to be in 20% or more of the reads with at
least two reads supporting it; (3) be homozygous (monoallelic) in each
individual; (4) support by two individuals for an allele to exist; and (5) the
positionhad tobepolymorphic (at least twoalleles) (Hirschetal., 2014). The
identified SNPs, i.e., those passing all of these filters, were analyzed and
clustered by genotype to identify any mislabeled samples. In addition,
genetic distances between all samples were calculated as previously
described and clustered with seedling transcriptome-derived SNPs
identified in the WiDiv 1.0 panel (Hirsch et al., 2014) to further confirm
genotype authenticity. All samples passing these quality control steps for
an individual genotype were then merged using the SAMTools merge
function, and the pipeline repeated from the sort and index step. A total of
175 samples representing 21 root, 21 shoot, and 133 kernel samples (12,
16, 20, 24, 30, and 36DAP) from 24 of the 26NAMparents passed quality
assessments and were used for SNP detection, and 172 of these were
used for triangulation analyses (Supplemental Table 1 and Supplemental
Data Set 8).

Gene Expression Analysis

RNA-seq reads were aligned to the maize B73 reference genome (AGPv2;
http://ftp.maizesequence.org/) using TopHat (v 1.4.1) (Langmead et al.,
2009) and SAMTools (v 0.1.12a) (Li et al., 2009); expression abundances
were estimated using Cufflinks (v 1.3.0) (Trapnell et al., 2010) using the
RefGen_v2 5b Filtered Gene Set (FGS) (http://ftp.maizesequence.org/
release-5b/filtered-set/). When running TopHat, the minimum and
maximum intron length was set to 5 and 60,000 bp, respectively, and
the same maximum intron length was used for running Cufflinks.
The –G and –b options were used when running Cufflinks; all other
parameters were left at default. Boundaries of gene models in the
AGPv2 annotation were corrected for GRMZM2G012966 (lycopene
epsilon cyclase) and GRMZM2G084942 (arogenate dehydrogenase),
both which were incorrectly fused with a flanking gene. GRMZM2G012966
(lycopene epsilon cyclase) was split, resulting in a new locus labeled as
GRMZM6G010010 (kinase-domain-containing protein). GRMZM2G084942
(arogenate dehydrogenase) was split, resulting in a new locus labeled as
GRMZM6G010020 (CBF1 interacting corepressor) and the fragments
per kilobase exon model per million fragments mapped (FPKM) values
recalculated just for these modified loci. Expression data were reported
in FPKM values. A Pearson correlation coefficient (r) was calculated for
all pairwise comparisons of all samples using FPKM data. Raw FPKM
data were input into R (version 3.1.0) and transformed into a data matrix.
Correlations for all observations were calculated using the “pearson”
method of the ‘cor’ base function in R. The calculated correlation co-
efficients were then visualized for all pairwise comparisons using the
‘heatmap.2’ function within the gplots package in R (Supplemental
Figure 4).

FPKM Filtering

FPKM reads were annotated by gene not transcripts, mapping to a total of
39,455 loci. The 5b FGS gene set was filtered such that at least one of the
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kernel developmental samples in at least one sampled founder line had an
FPKM greater than 1.0; a total of 27,187 genes remained upon filtering
with this criterion. Expression data for genes passing the specified
threshold were transformed according to log2(FPKM + 1), where the
constant of 1 was added to allow the transformation of “0” values. These
log2-transformed values are herein specified as “gene expression.”
Within the filtered and transformed transcriptomic data set, early kernel
samples correlatedmore closely in expression abundanceswith root and
shoot samples than with mid- to late-kernel samples (Supplemental
Figure 4). The number of aligned 50- or 55-bp reads per sample, both
unique and multiple-mapping, had a median of 40 million reads (median
86% of total reads) with SD of 16million reads (Supplemental Table 1 and
Supplemental Data Set 8).

Triangulation Analysis

Genomic regions in which both JL and GWAS associations colocalized
were further investigated using the following procedure. First, JL support
intervals from two or more individual-trait models that showed physical
overlap were merged to form common support intervals. Support
intervals detected for a single trait, with no physical overlap within other
trait models, were also retained. For each final distinct support interval,
Pearson correlationswere tested in all pairwise comparisons between (1)
QTL effect estimates for that interval in individual-trait JL model(s); (2)
genotype state of significant GWAS marker(s) in the interval for the re-
spective trait(s); and (3) log2-transformed expression values of candidate
gene(s) directly hit by or within6100 kb of any of these significant GWAS
markers.Theuseof 100kb todefine thecandidategenesearch rangewas
established through examination of LD decay and is further elaborated in
the results section.

To test for significance of the correlation between JL allelic effect
estimates and expression values of each candidate gene proximal to
significant GWAS markers, a multiple testing correction to control false
discovery rate at 0.05 was imposed on P values of the correlation
obtained for each gene. Namely, the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995) based on the total number of genes
proximal to the GWAS marker (within 6 100 kb) was applied using the
GAPIT package (Lipka et al., 2012) in R. For those correlations involving
one of the two traits with a negative optimal lambda for the Box-Cox
transformation (i.e., an inverse power transformation was applied for dT
and dT3), the sign of the correlation was flipped in graphical and tabular
representations (Figure 2 and Supplemental Figure 5 for master gene
summaries; Supplemental Figure 2 and Supplemental Table 6 for
pleiotropy) to represent the true directionality of the relationship be-
tween traits.

Epistasis

For each trait, all possible pairwise interactions (additive 3 additive)
between markers comprising the final JL model were individually tested
for significance in a model containing all marker main (additive) effects.
The P value threshold required for an interaction to enter the model was
determined by modeling 1000 null permutations of transformed trait
BLUEswith only additive terms in themodel to approximate a type I error
rate at a = 0.05. Interaction effects passing this threshold were used
togetherwith themain effects ofmarkers comprising the final JLmodel to
fit the final epistatic model. Calculations of PVE were performed using
effect estimates and allele frequencies within families as described
above, except that pairwise genotype scores were collapsed into three
classes for interaction terms due to insufficient degrees of freedom to
model all possible genotype states in the two-locus case. Specifically,
the two vectors of genotype state scores were multiplied to obtain
composite scores of 21 (one locus is homozygous for reference allele
and the other for minor), 0 (at least one heterozygote, meaning the two

alleles are assumed to cancel any interaction), or 1 (both loci are ho-
mozygous for reference, or both for minor). Interactions were graphically
depicted using the Circos software package (Krzywinski et al., 2009)
(Figure 5).

Pleiotropy

Pleiotropy, or shared genetic basis, was assessed between pairs of
traits as previously described (Buckler et al., 2009), by applying the JL
QTL model for each trait to every other trait. Pearson correlations
between allelic effect estimates derived from the final JL model for
a trait itself and themodel applied from every other trait were evaluated
for significance at a = 0.01, which with 23 df means a cutoff of |r| >
0.504. The sharedness, or percentage of shared QTL, between two
traits was calculated as the sum of the percentage of significant
correlations when the trait 1 model was applied to trait 2 and the
percentage when vice versa. Connections among QTL showing
sharedness were visualized using the networkR package (Butts, 2008,
2015) (Supplemental Figure 2).

Pleiotropy was also examined within common support intervals to
validate the merging of individual-trait intervals, a step conducted in
previous NAM JL analyses (Tian et al., 2011). In contrast to the above-
described pleiotropy analysis, this QTL-level analysis fit the single peak JL
markerwithin the common interval for each trait to every other trait that had
a peak JL marker in the interval.

LD Analysis

For each marker showing an RMIP of 0.05 or higher for one or more
traits in GWAS, pairwise LD with all other markers within 61 Mb was
estimated through custom Python and R scripts using squared allele-
frequency correlations (r2) as previously described (Weir, 1996). A null
distribution for LD was generated by performing the same estimation
for 50,000 markers selected at random. The same imputed genotypic
data set of 29.7 million segregating markers used in JL-GWAS was
used to estimate LD.

Standardized Effect Sizes

To more fully compare JL results across traits, effect sizes of JL peak
markers were standardized and visualized in relation to the allele fre-
quencies at these markers (Supplemental Figure 6). Given that 12 was the
smallest number of QTL detected for a tocochromanol trait aside from
PC-8, an outlier in both JLmodel size (eight QTL) and line-mean heritability
(lowest by4-fold), JLwas rerunconstraining thenumberofmarkersper trait
to 12 using transformed BLUEs. Allelic effect estimates were obtained by
subsequently refitting these 12-QTL models with untransformed BLUEs
and scaled by multiplying by the total heritable variance for each trait
(Brown et al., 2011). Total heritable variance was estimated on a by-trait
basis, as the line-mean heritability in NAM divided by the SD of un-
transformed trait BLUEs in the Goodman-Buckler inbred diversity panel
(Lipka et al., 2013). Allele frequencies were derived based on founders
exhibiting NAM JL allelic effect estimates significantly different from those
of B73, using estimates from transformed BLUEs given the involvement of
statistical inference.

Preparation and Identification of Standards for Chlorophylls and
Their Derivatives

Chlorophylls a and b were isolated from fresh spinach (Spinacia oleracea)
leaves as previously described (Canjura and Schwartz, 1991). Chlor-
ophyllideswere prepared by grinding fresh spinach leaves in 80%acetone
with 20% 40 mM sodium citrate, pH 8, and incubating overnight at room
temperature in darkness (Holden, 1961). After centrifuging to pellet debris,
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the supernatant was extracted twice with diethyl ether. The diethyl ether
extracts were pooled, dried over anhydrous sodium sulfate, evaporated,
and dissolved in 80:20 methanol:acetone. Pheophytins a and b and
pheophorbides a and b were prepared by acidification of their corre-
sponding purified chlorophylls and chlorophyllides, respectively, as de-
scribed (Schwartz et al., 1981; Canjura and Schwartz, 1991). Each
compound was isolated by semipreparative HPLC using a Shimadzu
Prominence HPLC and 5 mm Spherisorb ODS-2 column (250 3 4.6 mm)
(Orochem Technologies). Pigments were eluted using a linear gradient at
1 mL/min in which Solvent A was 80%methanol in acetone and Solvent B
was 80%methanol in 1M ammonium acetate. The gradient used was 0 to
100% solvent A for 15 min, hold solvent A at 100% for 15 min, and then
return to solvent B and reequilibrate for 7 min. Individual compounds were
identified and quantified by a combination of their retention and spectral
characteristics (Camara, 1985; Lichtenthaler, 1987; Zapata et al., 1987;
Milenković et al., 2012).

Extraction and Analysis of Chlorophylls and Derivatives

Embryos and endosperm from each NAM parent were dissected from
frozen kernels on a metal plate on dry ice to ensure all tissues remained
frozen. Embryo and endosperm tissues were ground in liquid nitrogen
and 50 to 60 mg tissue was extracted with 600 mL 10% (v/v) 0.2 M Tris-
HCl, pH 8.0, in acetone precooled to 220°C (Schelbert et al., 2009;
Christ et al., 2012) that contained 1 mg/mL butylated hydroxytoluene,
1 mg/mL bixin, and 1 mg/mL DL-a-tocopherol acetate as internal re-
covery controls. Three 3-mm glass beads were added and extraction
was done for 5 min by shaking using a commercial paint shaker (HERO).
Samples were centrifuged for 5 min at 13,000 RPM in a microfuge, and
the supernatant was transferred to a new tube. Three hundred micro-
liters of HPLC-grade water and 500 mL of diethyl ether were added,
vortexed, and centrifuged at 13,000 RPM for 2 min to allow for phase
separation. The upper (diethyl ether) fraction was transferred to a new
microcentrifuge tube, evaporated, and dissolved in 200 mL 100% ac-
etone, which was divided into two aliquots and evaporated. One aliquot
was dissolved in 100 mL of 3:1 (v/v) methanol:methyl tert-butyl ether for
analyses of tocochromanols as previously described (Lipka et al., 2013).
The second aliquot was dissolved in 100 mL of 80:20 (v/v) methanol:
acetone and assessed by HPLC for levels of the eight target chlorophyll
metabolites as described above. Pheophorbide b and pheophytin b,
whose presence indicates artifactual conversions during extraction,
were below detection levels in all samples analyzed. For each of the
detected chlorophyll metabolites, Pearson correlations with total to-
copherol levels were calculated within each time point after removing
values (concentration, pmol g21) that were more than three standard
deviations from the mean for the respective compound (the chlorophyll
metabolite and/or total tocopherols) within that time point.

Accession Numbers

Genes identified in this study are as listed in Figure 3, using the following
accession numbers as available in MaizeGDB: GRMZM2G084942,
GRMZM2G493395,GRMZM2G173358,GRMZM2G173641,GRMZM2G112728,
GRMZM2G082998,GRMZM2G088396,GRMZM2G035213,GRMZM2G036455,
GRMZM2G073351,GRMZM2G039373,GRMZM2G060870,GRMZM2G128176,
and GRMZM2G031028. HapMap sequence data, as described by Chia
et al. (2012) and Gore et al. (2009), can be found in the NCBI Short Read
Archive with accession numbers SRA051245 (HapMap v. 2) and
SRP001145 (HapMapv. 1). BothSNPdata sets are also available atwww.
panzea.org. The data reported in this article are tabulated in the sup-
plemental data and archived in the following places: All RNA-seq reads
are available at the National Center of Biotechnology Information Se-
quence Read Archive under BioProject Number PRJNA174231. SNPs

and expression abundances (FPKMs) are available from the DRYAD
repository (http://dx.doi.org/10.5061/dryad.5t8d9). Scripts used in
this study are available on GitHub (https://github.com/GoreLab/
Vitamaize_NAM_GWAS_LabVersion.git).

Supplemental Data

Supplemental Figure 1. Pairwise phenotypic correlations between
untransformed best linear unbiased estimators of 10 tocochromanol
grain traits.

Supplemental Figure 2. Pleiotropy of 162 quantitative trait loci
identified in joint-linkage analysis for 10 grain tocochromanol traits in
the U.S. maize nested association mapping population.

Supplemental Figure 3. Linkage disequilibrium estimates between
GWAS variants in the NAM population.

Supplemental Figure 4. Heat map displaying Pearson’s (r2) correla-
tion coefficient of expression abundances across all samples in this
study.

Supplemental Figure 5. Master summaries for the remaining genes
identified in this study.

Supplemental Figure 6. Frequency distributions of standardized joint-
linkage allelic effect estimates (absolute values) for tocopherol traits
and tocotrienol traits, for quantitative trait loci in each of three classes.

Supplemental Figure 7. Concentrations (pmol g21, log scale) of
chlorophyll pathway compounds and total tocopherols in embryos
and endosperm of NAM parents analyzed across developing kernel
stages.

Supplemental Figure 8. Relative explanation of phenotypic variance
for 10 tocochromanol grain traits by each of three classes of joint-
linkage quantitative trait loci.

Supplemental Figure 9. Distribution of untransformed best linear
unbiased estimators for 10 grain tocochromanol traits across the U.S.
maize nested association mapping population.

Supplemental Table 1. Summary of samples used for RNA isolation in
this study.

Supplemental Table 2. Percent phenotypic variance explained for
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