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Abstract

Improvement of statistical methods is crucial for realizing the potential of increasingly dense genetic markers. Bayesian
methods treat all markers as random effects, exhibit an advantage on dense markers, and offer the flexibility of using
different priors. In contrast, genomic best linear unbiased prediction (gBLUP) is superior in computing speed, but only
superior in prediction accuracy for extremely complex traits. Currently, the existing variety in the BLUP method is
insufficient for adapting to new sequencing technologies and traits with different genetic architectures. In this study, we
found two ways to change the kinship derivation in the BLUP method that improve prediction accuracy while maintaining
the computational advantage. First, using the settlement under progressively exclusive relationship (SUPER) algorithm, we
substituted all available markers with estimated quantitative trait nucleotides (QTNs) to derive kinship. Second, we
compressed individuals into groups based on kinship, and then used the groups as random effects instead of individuals. The
two methods were named as SUPER BLUP (sBLUP) and compressed BLUP (cBLUP). Analyses on both simulated and real
data demonstrated that these two methods offer flexibility for evaluating a variety of traits, covering a broadened realm of
genetic architectures. For traits controlled by small numbers of genes, SBLUP outperforms Bayesian LASSO (least absolute
shrinkage and selection operator). For traits with low heritability, cBLUP outperforms both gBLUP and Bayesian LASSO
methods. We implemented these new BLUP alphabet series methods in an R package, Genome Association and Prediction
Integrated Tool (GAPIT), available at http://zzlab.net/GAPIT.

Introduction

One of the ultimate goals of genomic research is to predict
phenotypes from genotypes. This line of research is named
genomic prediction. Genomic prediction in the human has
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the potential to lead to better medical treatments. For
example, disability or the need for hip replacement surgery
could be prevented if an increased risk of developmental
dysplasia of the hip could be determined at a young age
(Kurtz et al. 2007; Andersson and American Academyof

Sciences, Beijing, China

Guangdong Provincial Key Lab of Agro-animal Genomics and
Molecular Breeding, College of Animal Science, South China
Agricultural University, Guangzhou 510642, China

Department of Animal Breeding and Genetics, College of Animal
Science and Technology, China Agricultural University,
Beijing 100193, China

United States Department of Agriculture — Agricultural Research
Service, Ithaca, New York, USA


http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0075-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0075-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-018-0075-0&domain=pdf
http://orcid.org/0000-0001-7338-7718
http://orcid.org/0000-0001-7338-7718
http://orcid.org/0000-0001-7338-7718
http://orcid.org/0000-0001-7338-7718
http://orcid.org/0000-0001-7338-7718
http://orcid.org/0000-0003-3825-8480
http://orcid.org/0000-0003-3825-8480
http://orcid.org/0000-0003-3825-8480
http://orcid.org/0000-0003-3825-8480
http://orcid.org/0000-0003-3825-8480
http://orcid.org/0000-0002-3100-371X
http://orcid.org/0000-0002-3100-371X
http://orcid.org/0000-0002-3100-371X
http://orcid.org/0000-0002-3100-371X
http://orcid.org/0000-0002-3100-371X
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://orcid.org/0000-0002-5784-9684
http://zzlab.net/GAPIT
mailto:Zhiwu.Zhang@wsu.edu
https://doi.org/10.1038/s41437-018-0075-0

Expanding the BLUP alphabet for genomic prediction adaptable to the genetic architectures of complex... 649

Orthopaedic Surgeons 2015). Genomic prediction, also
named as genomic selection in crops and livestock, has the
potential to reduce breeding costs by eliminating individuals
with less potential at an early stage (Heffner et al. 2011,
Tempelman 2015; Wolc et al. 2016; Yu et al. 2016).

Revealing an individual’s genetic merit has enabled
revolutionary changes in agricultural production. The pro-
ductivity of most crops and livestock has doubled or tripled
over the last 50 years (VanRaden et al. 2009). An indivi-
dual’s genetic merit can be further leveraged by using
detailed genomic information (de los Campos et al. 2010).
With genetic markers that cover entire genomes, genetic
prediction for a complex trait can be achieved at a very-
early stage, that is, as soon as a DNA sample can be
acquired (Wray et al. 2007; Guo et al. 2011). When eval-
uating a young bull, the information on a DNA chip—at a
price of less than one hundred dollars—could save progeny
tests on several hundred daughters and reach the same
prediction accuracy (Hayes et al. 2010).

Prior to using genetic markers, the genetic merits of
individuals were predicted directly as the best linear
unbiased prediction (BLUP) using a fixed and random
effects mixed linear model (MLM). Individuals’ total
genetic effects were treated as random effects with variance
structure defined by the pedigree-based kinship (Henderson
1984). This method played the most important role for the
genetic improvement in livestock (Hayes et al. 2009a).
Many statistical software packages have been developed to
implement MLM, including those freely available for public
use, such as multiple trait derivative free restricted max-
imum likelihood (MTDFREML) (Boldman et al. 1993). In
the 1990s, more genetic markers became available. In 1994,
Rex Bernardo introduced markers covering the whole maize
genome to derive marker-based kinship among inbred lines
and, in turn, genomic predictions for their genetic merits
(Bernardo 1994, 1996).

Inspired by marker-assisted selection (MAS) developed
in the late 20th century, all available genetic markers were
fit simultaneously as random effects to avoid the model
over-fitting problem in MAS (Meuwissen et al. 2001). The
effects of all markers were then summed together to esti-
mate an individual’s total genetic value. The random effects
were assumed to have a normal distribution with variances
following a certain prior distribution. Bayesian methods
were employed for the posterior estimates of the random
marker effects. When the variances are forced to be the
same and a flat prior is applied to its prior distribution, the
model is equivalent to ridge regression (RR). With different
prior distributions, multiple Bayesian methods were devel-
oped, such as Bayes A, B, LASSO, and Cpi, creating a long
series of analysis options, known as the Bayesian alphabet
(Zhang 2004; Lorenzana and Bernardo 2009; Endelman
2011; Colombani et al. 2013). Among them, Bayesian

LASSO is commonly used due to the widely available
implementation of the LASSO algorithm (Park and Casella
2008).

In 2007, the pedigree-based kinship in widely used
software packages, such as MTDFREML, was replaced by
the marker-based kinship (Zhang et al. 2007). Soon after, a
computationally efficient algorithm was developed to derive
the marker-based kinship (VanRaden 2008). Due to the
advantages of fast computing times and similarity to the
existing models and software, this marker-based kinship
approach—well-known as genomic BLUP or genomic best
linear unbiased prediction (gBLUP)—quickly became the
practical method for genomic selection (Hayes et al. 2009b).
Furthermore, a single-step GBLUP (ssGBLUP) approach
was developed for situations when simultaneous use of
marker-based kinship and pedigree-based kinship is
advantageous (Aguilar et al. 2010; Christensen and Lund
2010).

Similar to the development of the Bayesian alphabet
series, many efforts have been conducted to enrich the
BLUP methods by using different kinship-derivation algo-
rithms. In fact, many of the kinship algorithms were
developed before the introduction of gBLUP. One category
of algorithms defines kinship as genetic similarity based on
calculating genetic distances, such as Nel’s distance
(Rousset 2000). Another category directly calculates kin-
ship (Loiselle et al. 1995; Ritland 1996). Dedicated software
packages have also been developed to derive kinship from
markers, such as SPeGedi (Hardy and Vekemans 2002).
Ultimately, however, improvement on gBLUP’s prediction
accuracy was found using kinship derived from weighted
markers. This method was named trait-specific relationship
matrix (TA) BLUP (taBLUP) (Zhang et al. 2011). taBLUP
conducts a genome-wide association study (GWAS) first
and then uses the association signals to weight markers.
Markers with stronger associations contribute more to kin-
ship than markers with weaker associations. Simulations
demonstrated that taBLUP had higher accuracy than
gBLUP, but still lower accuracy than a Bayesian method
(B) for traits controlled by smaller numbers of Quantitative
Trait Nucleotides (QTNs) (Zhang et al. 2011).

Many studies have also been conducted to compare
prediction accuracy between the Bayesian methods and
gBLUP. But, superiority between the two methods depends
on the specific traits evaluated. For example, in a compar-
ison using dairy cattle data, the accuracy of Bayes B (0.73)
was superior to gBLUP (0.64) for milk fat content; how-
ever, gBLUP (0.60) was superior to Bayes B (0.55) for milk
protein content. In general, Bayes B has the accuracy
advantage over gBLUP for traits controlled by smaller
numbers of QTNs; otherwise, gBLUP has the advantage
(Daetwyler et al. 2010). Nonetheless, given gBLUP’s
higher computational efficiency, developing methods within

SPRINGER NATURE



650

Jiabo Wang et al.

the BLUP framework that have similar or greater prediction
accuracy than the Bayes methods for traits with a variety of
genetic architectures is highly desirable.

In addition to number of genes, heritability is another
important dimension of genetic architecture. Both the
Bayes methods and gBLUP are sensitive to heritability
and perform poorly for traits with low heritability.
Therefore, new methods that are more tolerant to low her-
itability than Bayes methods and gBLUP are also critically
needed.

To address this need, we set out to expand the BLUP
alphabet series, targeting the incorporation of two important
features: (1) the series retains the computational efficiency
of gBLUP and (2) the series adapts to a variety of trait
genetic architectures so that prediction accuracy improves.
Accordingly, we added two new options within the
BLUP framework—one option for traits controlled by a
small number of genes and one for traits with low
heritability.

Materials and methods
Real data

Four published datasets from Arabidopsis, maize, mice, and
rice were used in this study. The first three species were
used to examine prediction accuracy due to their large
amount of available traits. The fourth species (rice) was
used to examine computing speed because it has the
largest amount of SNPs. Each dataset contained both
phenotypes and genetic markers. The mice data came from
a heterogeneous stock population kept by The Welcome
Trust Centre for Human Genetics (WTCHG) (available at
http://gscan.well.ox.ac.uk). This population was generated
from crossing eight inbred lines, followed by 50 generations
of random mating. The dataset contains 1940 individuals
genotyped with 12,227 SNP markers (Neves et al. 2012).
The maize dataset contains 282 inbred lines. The genotypes
contain 51,182 SNPs (Buckler et al. 2009; Cook et al.
2012). The Arabidopsis dataset includes 199 landraces
genotyped by 216,130 SNPs and has 81 traits (http://walnut.
usc.edu/2010/GWA) for Arabidopsis dataset. The rice
data contains 374 inbred lines (Huang et al. 2010).
The genotype data contains 842,474 SNPs from
genotyping-by-sequencing technology. We found no clear
cut between-generations in the Arabidopsis and maize
datasets.

Simulated phenotypes

The phenotypes were simulated from real genotypes. SNPs
in each dataset were randomly sampled as QTNs to control
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the additive genetic effects of the simulated phenotypes.
The additive genetic effects are the sum of all the QTN
effects. The QTN effects followed a standard normal dis-
tribution. After the observed additive genetic variance was
calculated, residual effects were added to the additive
genetic effects to form phenotypes. The residual effects also
followed a normal distribution. The variance of the residual
distribution was set accordingly so that the proportion of
additive genetic effects to the total variance equaled
heritability.

Pedigree-based BLUP

Although we did not use pedigree BLUP in our data ana-
lyses, it was the foundation for all the BLUP methods we
developed in this study. Individuals’ genetic effects (u)
were treated as random effects in a fixed effects and random
effects MLM, originally developed for using pedigree to
derive kinship among individuals. The model can be
expressed as

y=Xp+Zu+e (1)

where y is a vector of phenotypes; [ represents
unknown fixed effects, including population structure and
associated Quantitative Trait Loci (QTLs); and u is a
vector of genomic prediction with size n (the number
of individuals) for unknown random polygenic effects.
These random effects follow a distribution with a mean
of zero and a covariance matrix of G = Ac>=2Kc?2, where
K=0.5A is the pedigree-based kinship with element Kj
G, j=1, 2, ..., n) representing the relationship between
individuals i and j, A=2K is additive numerator
relationship, and ag is an unknown genetic variance. X
and Z are the incidence matrices for  and u, respectively; e
is a vector of random residual effects that are normally
distributed with a mean of zero and a covariance of
R =Ic?, where I is the identity matrix and o2 is the
unknown residual variance.

The full likelihood of observed y, given B, 62, and 62, is
as follows:

1 1 ,
Ir (y; p, (72, Ug)zi —nlog (27102) — log|H| — = (y — XB) Hz(y - Xp)
(2)
where
H =2K + 61 (3)
and
2
O
S=— 4
g )
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Fig. 1 Development of the BLUP alphabet. The best linear unbiased
prediction (BLUP) of random effects changes according to the base of
the random effects or the variance structure of the random effects. The
initial base of the random effects is individuals. The variance structure
of individuals is defined by their kinship multiplied by the genetic
variance among individuals. Kinship can be derived from markers or
selected bins (a). Each marker is a bin when the bin size is a single
base pair. The selection of markers is based on the strength of their
associations with a trait of interest, e.g., negative log P values are
indicated by the green peaks. As bin size increases, indicated by the
yellow and red blocks, multiple markers belong to the same bin. The
strength of a bin is represented by the marker with strongest associa-
tion within the bin. The selection of bins is determined by the
threshold of association, indicated by the horizontal layers. The bin

The residual likelihood of observed y, given o2 and 62, is as
follows:

le(y: o2, 02)=le(y: B. o2, o2) (5)
+% [qlog(zﬂﬂg) + 10g|XX’| — log‘X/H_lXH

where ¢ is a rank of X and § is solved to maximize (5) by
using the EMMA algorithm.

The estimate of B and prediction of u are solved as fol-
lows:

Bl (XX 7'X “Irxy
ul |\XZ ZZ+sA! Z'y

Genomic BLUP

(6)

The difference between gBLUP and pedigree BLUP is that
gBLUP substitutes the pedigree-based kinship with the
marker-based kinship. A variety of algorithms can be used
to derive kinship from markers. Comparisons among these
algorithms were conducted for both GWAS and genomic
prediction. In general, these algorithms have the same sta-
tistical power for GWAS and similar accuracy for genomic
prediction (Endelman 2011; Forni et al. 2011). We used the

] : "
srovp, 1 — 1% 1 2 5 | SBLUP

! 9]

1 1 QL

Group, i < :Glz : q(l_J 5

' Nlat 5 = | gBLUP  cBLUP
Group3|\| : o s >

; Tel, | S Individual ~ Group
| nhiey e Kinship
- ———a L--

C D

size and number of bins selected are optimized by the maximum
likelihood method, introduced by the SUPER (Settlement of MLM
under progressively exclusive relationship) algorithm. Either markers
or bins can be used to derive kinship to define genetic (g) similarity
among individuals (b). The kinship includes two types of individuals,
those with phenotypes (y), and those without phenotypes. Individuals
with phenotypes are classified as Reference (r), otherwise as Inference
(i). Both Reference individuals and Inference individuals are clustered
into groups using a compressed mixed linear model (c¢). When the
groups are clustered, kinship among individuals is replaced by the
kinship among groups accordingly. Consequently, the original geno-
mic BLUP (gBLUP) has evolved into SUPER BLUP (sBLUP) by
shifting markers to bins, or into compression BLUP (cBLUP) by
shifting individuals to groups (d)

efficient algorithm by VanRaden, as follows:

’

wWw
2K =———7T"—

(7)
2> pi(1—p)
where W is a centralized genotype matrix with rows as
individuals and columns as markers, and ,; is the frequency
of the second allele for the ith marker (VanRaden 2008).

SUPER BLUP

Inspired by taBLUP that uses weighted markers (Smith and
Gibson 1997; Zhang et al. 2010a, 2010b; Su et al. 2014;
Zhang et al. 2016), we derived kinship from estimated
QTNs. Ideally, for a specific trait, the kinship among indi-
viduals should be defined by the genes that control the trait.
Including additional markers will dilute the precision of
kinship among individuals for the specific trait. We tried to
solve two major problems that limit the prediction accuracy
of taBLUP. The first problem was the duplicate use of
associated markers in linkage disequilibrium (LD). These
markers appeared on the same peaks in the GWAS results
and had similar weights. The second problem was that the
majority of markers were not associated with particular
traits. Although individually these markers are assigned a
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small weight, together they can contribute significantly to
kinship. Therefore, these markers needed to be identified
and eliminated.

Both pedigree-based BLUP and marker-based genomic
BLUP use the average kinship across the genome. That is,
kinship is not specific to a particular trait. However, studies
have demonstrated that using trait-specific kinship results in
higher prediction accuracy (Zhang et al. 2010a, 2010b) and
higher statistical power (Wang et al. 2014). In these studies,
the trait-specific kinship was derived from either the asso-
ciated markers or by weighting all markers. Here, we
derived kinship by selecting the associated markers using a
likelihood method, and excluding the remaining markers.
This method was developed in our previous study on
GWAS and named Settlement Under Progressively Exclu-
sive Relationship (SUPER). In SUPER, the real QTNs are
estimated as bins, with bin size and number optimized using
a likelihood method (Fig. 1a). These estimated QTNs are
named pseudo QTNs. We used the pseudo QTNs to derive
kinship among individuals. For the convenience of illus-
tration, we named BLUP based on the SUPER method
SUPER BLUP (sBLUP). One slight difference between
deriving kinship for sBLUP and deriving kinship for
GWAS is that sBLUP does not have exclusion process,
which is sued to exclude the associated markers that are in
LD with the testing marker for GWAS. All markers that
maximize the likelihood for a particular trait are used to
derive kinship for sBLUP.

The difference between gBLUP and sBLUP is that
gBLUP uses all the markers and sBLUP uses the associated
markers to derive kinship in formula (7). In sBLUP, all
associated markers are grouped into bins based on their
locations on chromosomes (Hu et al. 2012). After GWAS is
performed on all markers, the entire genome is divided into
bins with size of s base pairs. Each bin is represented by the
most significant marker within the bin. The top ¢ significant
bins are selected as a W matrix for calculating kinship using
formula (7). The size of bins (s) and number of bins selected
(r) are optimized to maximize the following likelihood,
which has the same format as formula (5):

1R(y7 Ka 62, Uz) = lR(y, W» 65; Gg) - IR(Y7 s, I, sz 65)

(3)

The conventional gBLUP uses the kinship in formula (3),
derived from using all the markers as W; whereas, sSBLUP
uses the kinship derived from the selected bins through
formula (8) as W.

Compressed BLUP

In a previous study (Zhang et al. 2010a, 2010b), we
replaced random effects from individuals by random effects
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from their corresponding groups. Individuals were com-
pressed (clustered) into groups based on kinship among
individuals. We used this method for GWAS and demon-
strated that it improves statistical power for mapping genes.
For genomic prediction in this current study, we first clus-
tered individuals into groups, whether or not these indivi-
duals had phenotypes. Then, we determined the optimum
grouping that gave the best likelihood (Fig. 1b—d) based on
individuals with phenotypes. We named this new BLUP
variation compressed BLUP, abbreviated as cBLUP. The
conventional gBLUP is an extreme case of cBLUP, where
each individual is its own group. Theoretically, cBLUP
should perform better than, or at least as well as, gBLUP,
because cBLUP choose the grouping with the maximum
likelihood.

With individuals in gBLUP replaced by the corre-
sponding groups in cBLUP, the kinship among individuals
is also replaced by the kinship among groups. The kinship
between two groups is defined as the average kinship
between the individuals of the two groups. The kinship of a
group itself is the average kinship among individuals in the
group. For a specific clustering method, the grouping and
the kinship among the groups are completely defined by the
number of groups. Therefore, likelihood under the com-
pressed MLM can be defined as follows:

Ir (y; grouping, ai, ag): Ir (y; g, ai, ag) 9)

where g is the number of groups.

For n individuals and a given clustering algorithm, the
clustering tree is determined only by the kinship among
individuals, with n possible grouping levels, g =n, n—1,
..., 2, and 1. To reduce computing time, an option is to
examine the likelihood of n possibilities with intervals. For
each grouping level, the likelihood is determined by the
individuals with phenotypes. For p individuals with phe-
notypes, the dimensions of y, u, and Z matrices in (1) are p
by 1, g by 1, and p by g, respectively. Consequently, the
kinship among groups has dimensions of g by g. Some
groups may contain both types of individuals, with and
without phenotypes. Some groups may contain only the
individuals without phenotypes. Even in the latter case, the
prediction formula is still the same as (6). The only dif-
ference is that kinship among individuals is replaced by
kinship among groups.

Bayesian LASSO

With different settings of priors, the Bayesian alphabet
series offers a variety of methods for performing GS. We
chose Bayesian LASSO (Bayesian Least Absolute Shrink-
age and Selection Operator) because, in addition to the
criteria of computing speed and software availability, it has
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Fig. 2 Impact of kinship derived from different types of markers on
prediction accuracy and model fit. Prediction accuracy and model fit
were evaluated on simulated mouse traits controlled by 10 QTNs at
three levels of heritability. The heritability (h2) was set to 0.25, 0.5,
and 0.75 (a—c, respectively). QTNs were randomly sampled from a
total of 12,227 available markers on 1940 mice individuals from the
WTCHG dataset. Four types of markers were used to derive kinship:
(1) all markers (method of gBLUP), (2) 10 true QTNs plus 1000
randomly selected Non-QTN Markers (NQM), (3) estimated QTNs
from SUPER (method of sBLUP), and (4) 10 true QTNs. We com-
pared the impact of the different kinship derivations on prediction
accuracy as the Pearson correlation coefficient between predicted and

least assumptions among the Bayesian methods. The fun-
damental assumption is that the effect of a marker has its
own distribution characterized by the variance of the genetic
effect. The variance follows a double exponential distribu-
tion without further hyper-parameters. The other con-
sideration in choosing Bayesian LASSO was that the
differences between Bayesian LASSO and other Bayesian
methods are well-documented (Moser et al. 2009; Heslot
et al. 2012; Neves et al. 2012).

Bayesian LASSO was implemented in a commonly used
R package, “BLR” (Pérez et al. 2010; Heslot et al. 2012).
This package runs a Gibbs sampler on a Bayesian regres-
sion model with multiple optional effects. These effects
include: (1) fixed effects with a flat prior, (2) RR with
random effects following an identical independent dis-
tribution, (3) correlated random effects with variance
structure defined by a kinship matrix, and (4) the random
effects of Bayesian LASSO. In this study, we fit only the
fixed effects and the random effects of Bayesian LASSO.
The fixed effects included the first three principal

®  Accuracy ® -2LL =]
@

<

3

o

- - . o
- v

o~

-

o

L ©

=}

<

.2

o

LS

<

N

- - Lo
o

L ©

©

<

-

o

Lo

<

~N

i L o

SBLUP

observed phenotypes, and on model fit as twice the negative log
likelihood (—2LL). The accuracy (blue bars) and —2LL (red bars) are
displayed as the means of 40 replicates. The standard errors are
indicated by the whiskers on the bars. Each replicate used a five-fold
cross-validation. Inferences were used to evaluate prediction accuracy
and references were used to evaluate —2LL. The phenotypes of
inferences were not used for estimating QTNs in sBLUP to ensure
independent tests on inferences. As expected, the set of estimated
QTNs (i.e., sSBLUP) performed a bit worse than the ideal scenario (true
QTNs). However, sBLUP performed better than QTN + NQM and
much better than all markers (gBLUP)

components for all species. In this study, we set 80,000
iterations and 60,000 as the burning part for all Bayesian
LASSO experiments.

Cross-validation

For each dataset, individuals were randomly sampled into
five groups. One group was treated as the inference and the
other four groups were treated as the reference. The phe-
notypes of the reference panel were used to derive the
genomic prediction (Weber et al. 2012). The phenotypes of
the inference panel were masked and only the genotypes of
the inference were used to derive the genomic prediction.
GWAS and sBLUP were performed on the individuals of
the reference only. The Pearson correlation coefficient was
calculated between predicted and observed phenotypes in
the inference group (Crossa et al. 2010; Ober et al. 2012).
The inference group was rotated to another group until
every group was treated as the inference. The mean of the
five correlation coefficients was used as the prediction
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Fig. 3 Impact of clustering individuals to groups on model fit and
prediction accuracy. The impact was evaluated for three real traits in
three species: short-day vernalization (SDV), weight growth intercept,
and plant height for Arabidopsis, mice, and maize, respectively. The
entire population in each species was randomly divided into reference
(80%) to exam model fit and the rest as inference to exam prediction
accuracy. Clustering individuals into groups was based on kinship
among individuals from both references and inferences; however, the
phenotypes of inferences were masked. When number of groups
equaled number of individuals, the prediction was equivalent to the
prediction resulting from the conventional genomic BLUP (gBLUP)
method. When a group contained more than one individual, the pre-
diction for a group was used as the prediction for each individual
within the group. The phenotypes of references were used to evaluate

accuracy (Zhou et al. 2016). The random grouping and
prediction accuracy calculation process was repeated 40
times for all BLUP methods and 20 times for Bayesian
LASSO. We reported the means and standard errors of the
replicates.

Results

To show how these two new BLUP variations work and
their advantages over both gBLUP and Bayesian LASSO,
we conducted a series of studies on both simulated phe-
notypes and real phenotypes in three species (Arabidopsis,
mice, and maize). The number of individuals and markers in
each dataset are summarized in Table S1. Prediction
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Number of groups

Number of groups

the model fit (top panel: a—c), as indicated by twice the negative log
likelihood (—2LL). Prediction accuracies for cBLUP were evaluated as
the correlations between predicted and observed phenotypes of infer-
ences (bottom panel: d—f). Initially, both model fit and prediction
accuracy increased with increasing number of groups, but decreased
after reaching an optimum peak. The optimum peak of model fit
corresponded to the optimum peak of prediction accuracy for com-
pressed BLUP (cBLUP). This trend was consistent for all the traits in
the three species we examined, as demonstrated on a replicate for
Arabidopsis (a, d), mice (b, e), and maize (c, f). The trend was also
consistent across replicates of randomly assigning reference and
inference, however, the magnitude of likelihood, accuracy, and num-
ber of groups at the peaks varied slightly among replicates

accuracy was examined by a five-fold cross-validation. The
predicted phenotypes of inference were then compared to
their true phenotypes to evaluate prediction accuracy.

Kinship based on true or estimated QTNs

For a specific trait, the kinship among individuals is best
defined from only the true QTNs. With simulated traits, we
compared the prediction accuracies that resulted from using
four different sets of markers to define kinship: (1) true
QTNs, (2) all available markers, (3) true QTNs plus 1000
Non-QTN Markers (NQMs) for dilution, and (4) estimated
QTNs by using the SUPER algorithm under the assumption
that their locations are unknown. The set of true QTNs
mimics an ideal situation, which is unrealistic in practice.
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Fig. 4 Interaction between prediction methods and genetic archi-
tecture. Prediction accuracies were evaluated on mouse phenotypes
simulated with different numbers of Quantitative Trait Nucleotides
(QTNs) at different heritabilities. The QTNs were sampled from
12,227 markers genotyped on 1940 mice individuals from the
WTCHG dataset. The heritabilities (hz) were set to 0.75, 0.5, 0.25, and
0.1 (a—d, respectively). Five-fold cross-validation was conducted to
evaluate prediction accuracies by comparing four methods: sBLUP,

The set of all available markers corresponds to the kinship-
derivation method in conventional gBLUP. The set of true
QTNs plus NQMs demonstrates the impact of dilution as a
consequence of including NQMs. The set of estimated
QTN corresponds to the method used in sBLUP.

The simulated traits were controlled by 10 QTNs at three
levels of heritability (0.25, 0.5, and 0.75). The QTNs were
randomly sampled from a total of 12,227 available markers
on 1940 mice individuals from The Welcome Trust Centre
for Human Genetics (WTCHG) dataset (http://mus.well.ox.
ac.uk/mouse/HS/). Model fit and prediction accuracy were
evaluated through five-fold cross-validation. Model fit was
evaluated as twice the negative log likelihood (—2LL) in the
reference population. As both cBLUP and sBLUP do not
change the number of fixed effects, other criteria, such as
Akaike Information Criterion (AIC) or Bayesian Informa-
tion Criterion (BIC), stay the same trend as likelihood. The
lower the —2LL value, the better the model fit. Prediction
accuracy was evaluated as the Pearson correlation coeffi-
cient between the observed and predicted phenotypes in the
inference population. The phenotypes of inferences were
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Bayesian LASSO, cBLUP, and gBLUP. The cross-validations were
replicated 40 times when gBLUP, cBLUP, and sBLUP were used and
20 times when Bayesian LASSO was used. The first 80,000 iterations
were used as “burn in” and the next 60,000 iterations were used to
derive Bayesian estimations. The advantage of the new developed
method are under condition of less QTNs (sBLUP) and low heritability
(cBLUP)

not used for estimating QTN to ensure independent tests on
inferences.

The means and standard errors for the 40 replicates are
illustrated in Fig. 2. Whether model fit in reference or
prediction accuracy in inference, the set of true QTNs
performed the best across the different levels of heritability.
The set of all the available markers (i.e., gBLUP) performed
the worst. Adding 1000 NQM to the true QTNs reduced
model fit compared to the set of true QTNs. Although the
set of estimated QTNs (i.e., SBLUP) performed worse than
the set of true QTNs, it performed better than the set of true
QTNs plus NQM, and much better than gBLUP.

Substitution of individuals with groups

To evaluate the impact of substituting individuals with their
corresponding groups (i.e., cBLUP method), we examined
model fit and prediction accuracy on real traits in three
species: Arabidopsis, mice, and maize (Fig. 3). For the real
traits, we used short-day vernalization (SDV), weight
growth intercept, and plant height for Arabidopsis, mice,

SPRINGER NATURE
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Fig. 5 Superiority of BLUP methods over Bayesian LASSO on real
traits. Three BLUP methods (gBLUP, cBLUP, and sBLUP) were
compared with Bayesian LASSO. Superiority was defined and cal-
culated as the difference in prediction accuracy between each BLUP
method and Bayesian LASSO. Each trait is presented as a dot and
positioned according to its heritability and superiority value for the
three BLUP methods. A dot is filled solid if a BLUP method is
superior to Bayesian LASSO; otherwise, a dot is outlined. We eval-
uated 81, 41, and 35 real traits from Arabidopsis (a—c), mice (d—f) and
maize (g-), respectively. The Arabidopsis data contained 21 traits on

and maize, respectively. These traits had the most number
of records in each species. All available markers were used
to derive kinship among individuals.

We clustered individuals into groups based on kinship
among individuals from both references and inferences;
however, the phenotypes of inferences were masked. That
is, only the phenotypes of references were used to evaluate
the model fit, based on —2LL. Prediction accuracies were
calculated as the correlations between predicted and
observed phenotypes in the inference populations. The
prediction for a group was used as the prediction for each
individual within the group. We varied the number of
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flowering time that were classified as complex traits in a previous
study (cite). The complex traits from Arabidopsis are colored red; the
other traits (simple) are colored blue (a—c). We did not differentiate
complexity for the traits in maize or mice. All traits are colored black
in these two species (d—i). For most of the simple traits from Arabi-
dopsis (blue dots), SBLUP is superior to Bayesian LASSO (c). For the
mice traits with low heritability (<40%), cBLUP is superior to Baye-
sian LASSO (e). In maize, Bayesian LASSO is superior to gBLUP for
most of the traits, but not compared with cBLUP or sBLUP(g)

groups from one to the total number of individuals.
The average number of individuals per group was defined
as the compression level in a previous study (Zhang et al.
2010a, 2010b). The minimum level of compression occurs
when each individual is its own group. When number of
groups equaled number of individuals (i.e., the far
right side of each plot in Fig. 3), the prediction was
equivalent to that of the conventional gBLUP. The max-
imum level of compression occurs when all individuals
belong to one group. In this case, the BLUP of the group is
confounded with the overall mean and is therefore
irrelevant.
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Both model fit and prediction accuracy initially increased
with increasing numbers of groups, but then each decreased
after reaching an optimum peak (Fig. 3). This trend was the
same as that of statistical power in GWAS in response to
varying the compression level (Zhang et al. 2010a, 2010b).
The optimum compression level varied across species,
subpopulations, and traits. We also found that the model fit
in the reference population and the prediction accuracy in
the inference population changed correspondingly. The
compression level (or the number of groups) with the best
model fit in the reference population corresponded to the
optimum compression level with the best prediction accu-
racy in the inference population. These results show that, in
practice, model fit is a useful criterion for deciding which
compression level to use for the final (optimum) genomic
prediction in cBLUP. Therefore, we used the prediction
accuracies at the optimum peak of model fit as the final
prediction accuracies for cBLUP. The accuracies for
cBLUP were higher than gBLUP in all three species.

Performance on simulated traits with different
genetic architectures

To fully understand which BLUP or Bayes method should
be used with different genetic architectures, we examined
prediction accuracies on simulated traits. Genetic archi-
tecture is defined in two dimensions. One dimension is
complexity, based on number of QTNs. Four levels of QTN
numbers were evaluated: 5, 100, 500, and 1000. The QTNs
were sampled from 12,227 real markers genotyped on 1940
mice individuals from the WTCHG dataset. The second
dimension is heritability. Four levels of heritability were
evaluated: 10, 25, 50, and 75%. We examined three BLUP
methods (gBLUP, sBLUP, and c¢cBLUP) and Bayesian
LASSO with five-fold cross-validation.

For a trait controlled by a few QTNs with high herit-
ability, we found that the prediction accuracy of sBLUP is
superior to any other method (Fig. 4a, b). For traits with low
heritability (Fig. 4d), cBLUP is superior to any other
method except in situations where traits are controlled by a
few QTNs. In all cases, cBLUP is either similar or superior
to gBLUP (Fig. 4a—d). For traits with high heritability,
Bayesian LASSO is superior to any other method except
in situations where traits are controlled by a small number
of QTNs (Fig. 4a, b).

Although ranking the genetic merit of individuals is the
primary objective of genomic prediction, understanding the
magnitude of predictions compared with their true values is
also of academic interest. The phenomenon known as
inflation of prediction, where BLUPs shrink as they
approach zero, is well-documented. Thus, we were inter-
ested in exploring how the different BLUP methods per-
formed relative to inflation under the different genetic

architectures. We simulated a trait controlled by 5, 100,
500, and 1000 QTNs under different heritabilities (0.1,
0.25, 0.5, and 0.75).

As expected, the regression coefficients of predicted
breeding values over the true breeding values were less than
one for all methods under all circumstances due to shrink-
age of BLUPs. However, their magnitude of inflation were
different. SBLUP demonstrated the least inflation when the
number of QTNs was small (5 and 100), but the most
inflation when the number was large (500 and 1000). This
result suggested again that sSBLUP performs best when traits
are controlled by a small number of QTNs. For a trait
controlled by a larger number of QTNs (500 and 1000),
the advantage of gBLUP and cBLUP over sBLUP
strengthened with increased heritability. In all circum-
stances, cBLUP outperformed gBLUP. This trend for
inflation followed the same trend for prediction accuracies
(Figure S1).

Performance on real traits across species

We examined the three BLUP methods (gBLUP, cBLUP,
and sBLUP) and Bayesian LASSO on a total of 157 real
traits from three species: Arabidopsis (81), mice (41), and
maize (35). The heritability of each trait was estimated as
the proportion of estimated genetic variance among indi-
viduals to total variance. All traits are presented in Fig. 5 as
the heritability and superiority of each BLUP method over
the Bayesian LASSO method.

The superiority of each method depends on both the
complexity and heritability of the trait being analyzed.
Among the 81 traits in Arabidopsis, 21 are complex traits
associated with flowering time. The other 60 traits are
relatively simple, relating to development and defense. For
the 60 simple traits, we observed that sSBLUP performed
much better than Bayesian LASSO (Fig. 5 and S2). The
heritabilities of traits in mice are much lower than the
heritability of traits in Arabidopsis and maize. The 41 traits
in mice had a mean estimated heritability of 30, versus 55%
in maize and 50% in Arabidopsis. For mice traits with low
heritability, cBLUP performed much better than Bayesian
LASSO. Out of the total 157 traits, Bayesian LASSO had
an advantage over SBLUP and cBLUP for only 21 traits
(13%) (Figure S4). These observations on real traits
reflected the same trend we observed on simulated traits.

Among the three species (Arabidopsis, maize, and mice),
mice had a clear family structure defined by the female
parents. The 1940 individuals were from 160 female par-
ents. This structure allowed us to create different levels of
relatedness between reference and inference, which helped
to investigate the relationship between prediction accuracy
and level of relatedness. We chose the trait with the most
phenotype records, weight growth intercept, to investigate
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the impact of relatedness on prediction accuracy through
five-fold cross-validation (Figure S3).

Under the scheme of family selection with one individual
from each family, the relatedness between reference and
inference was defined as the average relatedness among
families. No individuals in the inference had family mem-
bers in the reference. As expected, both gBLUP and cBLUP
had low prediction accuracies, and we found no significant
difference between the two methods. When we increased
the number of individuals per family to five, for a total of
800, the chance that individuals in the inference had family
members in the reference greatly increased. Consequently,
prediction accuracy improved for both cBLUP and gBLUP,
with ¢cBLUP’s improvement much higher than gBLUP’s.
cBLUP’s advantage over gBLUP remained when indivi-
duals were sampled with an average of 5 individuals per
family; that is, the number of individuals per family varied.
However, when the average number of individuals per
family was reduce to one, the prediction accuracies
decreased and the advantage of cBLUP over gBLUP dis-
appeared. As expected, the prediction accuracies that
resulted from sampling exactly one individual per family
were lower than sampling an average of one individual per
family. In the latter case, because the selection of indivi-
duals was random, any one individual in the inference could
have had family members in the reference.

Superiority domains of different methods

Results of our comparisons on simulated and real traits from
the three species suggest that each of the BLUP methods
and Bayesian LASSO has its own domain of superiority
according to genetic architecture (Fig. 6). These domains
are defined by different levels of the two dimensions of
genetic architecture: heritability and complexity. Com-
plexity is determined by the number of genes that control a
trait. The simplest traits (i.e., lowest complexity) are Men-
delian traits, which are controlled by only a few genes. The
complex traits are controlled by many genes.

The sBLUP method is superior for traits with fewer
genes. Bayesian LASSO performs well for traits with high
heritability. The gBLUP method is best used with complex
traits controlled by many genes. In most cases, cBLUP is
superior to gBLUP, especially for traits with low herit-
ability. With increased heritability and number of genes, the
superiority of cBLUP over gBLUP disappears.

Computing time
The complexity of computing time for the BLUP methods is
O(mn® +n’) with P3D (population parameter previously

determined) algorithm (Zhang et al. 2010a, 2010b), where n
is the number of individuals and m is the number of
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Fig. 6 Working domains of prediction methods corresponding to
genetic architecture. Genetic architecture is defined by two dimen-
sions. One dimension is complexity, defined by the number of genes
that control a trait. The simplest traits are Mendelian traits, which are
controlled by only a few genes. The complex traits are controlled by
many genes. The other dimension is heritability. Each prediction
method has its own dominant domain of genetic architecture defined
by different levels of the two dimensions. These domains are con-
ceptually illustrated by the areas colored with different shades of blue.
For example, for a trait controlled by a small number of genes with
high heritability, sSBLUP is superior to others; whereas, for a trait with
low heritability, cBLUP is much better than the other methods

markers. The BLUP methods use a two-step calculation
process. The first step calculates kinship. The second step
solves the MLM equations. The time complexity of the
kinship calculation is O(mn?). The time complexity of the
MLM step is O(n’), required to produce the inverse of the
kinship matrix. Although cBLUP and sBLUP increase the
number of inversions, the complexity remains the same
relative to n. Because the number of markers is irrelevant
when solving MLM, cBLUP has the same level of com-
puting time complexity as gBLUP, regardless of number of
markers. During the optimization of grouping, computing
time is reduced when more individuals are clustered into the
same groups, compared to the initial stage, i.e., gBLUP.
The computing time complexity of Bayesian LASSO is
O(mnl), where [ is the length of the Markcov Chain (MC).
For a given length of MC, the complexity of Bayesian
LASSO is linear to both number of individuals and markers.
However, the actual computing time is much greater than
the BLUP methods with large numbers of markers because
the MC Monto Caro (MCMC) length is long and also
related to both m and n. Thus, with more markers, Bayes
methods are slower than BLUP methods. In our datasets,
the number of markers was much larger than the number of
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Fig. 7 Computing times of genomic prediction methods. The com-
puting times were examined on both synthetic and real datasets. The
synthetic datasets were created from an original dataset of maize with
282 individuals and 3082 markers. The original dataset was duplicated
5, 10, 15, and 20 times for both individuals and SNPs (a). The largest
synthetic dataset (duplicated 20 times) contained 5640 lines and

individuals. For example, ratios of markers to individuals
(m:n) in Arabidopsis and rice reached 1086:1 and 2252:1,
respectively. In such cases, BLUP methods are superior to
Bayes methods. The observed computing times were 14 and
25h with Bayesian LASSO for Arabidopsis and rice,
respectively. In contrast, all the BLUP methods completed
these analyses within 30 min (Fig. 7b).

Even for a dataset with an m:n of 10, the computing time
of Bayesian LASSO increased much faster with increasing
data size (determined by both markers and individuals)
compared to BLUP methods. We compared the computing
times of the four methods (Bayesian LASSO, gBLUP,
cBLUP, and sBLUP) on multiple synthetic datasets that
were created from an original maize dataset with 282 indi-
viduals and 3082 markers. The original dataset was dupli-
cated 5, 10, 15, and 20 times for both individuals and SNPs.
The largest dataset (duplicated 20 times) contained 5640
lines and 61,640 SNPs. Bayesian LASSO was the most
time-consuming. The most efficient method was gBLUP.
Due to the additional computation necessary for clustering
and selecting estimated QTNs, cBLUP, and sBLUP are less
computationally efficient than gBLUP (Fig. 7a).

Discussion

Kinship is a major element of MLM. Ideally, kinship should
precisely define the variance structure of random indivi-
duals’ genetic effects for a trait of interest. When another
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61,640 SNPs. The real datasets contained 199 individuals genotyped
with 216,131 SNPs in Arabidopsis and 374 individuals genotyped
with 842,474 SNPs in rice, respectively (b). Both cBLUP and sBLUP
have similar computing efficiency as gBLUP, which is much more
efficient than Bayesian LASSO for situations with more markers than
individuals

trait is evaluated, the variance structure should change.
However, adapting to this change is impossible for the
pedigree-based BLUP (pBLUP) method, in which kinship
is based on pedigree. Pedigree-based kinship remains con-
stant and represents the average kinship across traits.
Pedigree-based kinship not only lacks the ability to adjust
for different traits of interest, but also lacks the ability to
differentiate among full sibs. Even when variation exists
among full sibs, pedigree-based kinship does not distin-
guish pairwise kinship among them. In contrast, these
magnificent variations became evident when we used
genetic marker-based kinship methods. In this study, we not
only changed the markers used to define kinship among
individuals, but also changed the kinship among individuals
into kinship among groups. These changes created extra
flexibility for BLUP and, in turn, the opportunity to expand
the BLUP alphabet series, adaptable to the different genetic
architectures of complex traits.

Realized kinship

The kinship among some individuals, such as full sibs, are
exactly the same based on pedigree. However, their kinship
is highly likely to be different based on genetic markers.
One pair of full sibs may share more common markers than
another pair of full sibs due to multiple reasons, for
example, Mendelian sampling. Studies have shown sub-
stantial variations in kinship among full sibs (Luki¢ et al.
2015; Vela-Avitia et al. 2015). Taking a bi-parental
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population as an example, the proportion of alleles from a
specific parent can range from 20 to 80% among full sibs.
By using pedigree-based kinship, these differences are
masked because kinship is the same among all full-sib pairs.
However, marker-based kinship methods reveal the actual
similarity among individuals and, thus, partially explain
why gBLUP is more accurate than pBLUP (Hayes et al.
2009b; Habier et al. 2010).

QTN-based kinship

The chance of finding associated markers is higher for traits
controlled by a few genes compared to traits controlled by
many genes. Consequently, SBLUP is the favored genomic
prediction method for traits controlled by a small number of
genes because sBLUP uses a select number of estimated
(pseudo) QTNs to derive kinship. sSBLUP also has the
advantage of being able to fully use dense markers such as
sequence data. In such cases, chances are greater for finding
markers in strong LD with genes controlling the trait of
interest. In contrast, genomic predictions with gBLUP is
based on kinship derived from all markers. Because kinship
calculated from all genetic markers remains stable after the
number of genetic markers reaches a certain level, predic-
tion accuracy with gBLUP does not increase with increased
marker density. Consequently, dense genetic markers (e.g.,
sequencing data) provide more information than gBLUP
can effectively use. In contrast, the use of dense markers
enhances the prediction accuracy of sBLUP and the Baye-
sian methods.

Group-based kinship

All of the above derived kinships—pBLUP, gBLUP, and
sBLUP—define the genetic relatedness among individuals.
Consequently, individuals are fit as random effects. Alter-
natively, for each of these kinships, individuals can be
clustered (compressed) into groups and groups can then be
fit as random effects instead of individuals. Therefore, the
cBLUP procedure can be applied to any type of kinship
among individuals. In this study, we applied cBLUP to all
the kinships except the pedigree kinship. When we applied
compression to kinship from sBLUP to create a combina-
tion, compressed SUPER BLUP (csBLUP), the compres-
sion failed to boost accuracy over SBLUP. This result makes
sense because kinship in sBLUP is defined by a small
number of estimated QTNs. That is, kinship has a much
smaller number of different kinship elements, which is
similar to kinship among groups.

cBLUP works to boost accuracy when kinship is derived
from all markers for two reasons. First, similar to why
compression works for GWAS (Zhang et al. 2010a, 2010b;
Liet al. 2014), individuals in the same group are more related
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than individuals from different groups. When individuals are
closely related, their phenotypic variations are most likely
from error. Each individual can be considered a replicate that
represents the common genetic background of individuals in
the group. The group genetic effects are better represented by
the multiple measurements through individuals.

Second, with cBLUP, individuals are predicted based on
their group effects. Thus, the likelihood that an individual of
inference will belong to a group containing individuals of
reference (with phenotypes) is high. The individuals will
share the same prediction. On other hand, the chance is
small that an individual of inference will belong to a group
in which no individuals have phenotypes. The prediction of
the group effect is calculated based on other groups with
individuals having phenotypes. This situation is true for
every individual of inference by using regular gBLUP. Each
individual must be predicted based on other individuals in
reference.

One could argue that the genetic differences among
individuals in the same group might diminish under the
compressed MLM. However, individuals are clustered into
the same group for two reasons. First, these individuals are
closely related; only minor genetic differences exist among
them. Second, most of the phenotypic differences among
individuals in the same group are caused by residual errors.
In this case, individual-based BLUP, such as gBLUP, will
result in different genomic predictions among individuals in
the same group; but, these differences will be more likely
due to error.

Infrastructure of kinship methods

The pBLUP method, based on pedigree-based kinship, has
been successfully used for genetic evaluation in animals and
plants for many decades. Many pBLUP software packages
have been developed in both public and private sectors.
Compared to the Bayesian methods, gBLUP, sBLUP, and
cBLUP have the advantage of easily integrating into the
existing genetic evaluation infrastructure that uses pedigree
to derive kinship. The only modification required for
gBLUP is the replacement of kinship based on pedigree by
kinship based on genetic markers. Other minor modifica-
tions may also be required for the different types of marker-
based kinship derivation used in the other BLUP alphabet
methods. For example, the implementation of cBLUP is
similar to gBLUP, but additional algorithms will be needed
for the individual clustering analyses, group kinship cal-
culations, and optimum grouping assignments.

Computing time

Genomic prediction with the BLUP alphabet series may
involve GWAS, estimation of QTNs, and clustering
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individuals into groups. Yet, computing time complexity
remains the same as conventional gBLUP in terms of
number of individuals and markers. For the BLUP methods,
computing time complexity is linear to number of markers.
Currently, the number of markers is larger than the number
of individuals; thus, BLUP methods have the advantage
over the Bayesian methods. With the computer software
package, Genome Association and Prediction Integrated
Tool (GAPIT) (Tang et al. 2016), we analyzed a large
dataset, containing over 10,000 individuals and 250,000
SNPs, on a 16G-memory computer. cBLUP finished both
GWAS and genomic prediction in just three days. Based on
a test with a smaller dataset, we projected that the Bayesian
LASSO method would take several years to analyze this
same large dataset. However, the trend may change in
response to decreasing sequencing costs. By the time the
number of individuals becomes greater than the number of
markers, BLUP methods will need to be adjusted to ensure
computing time complexity is linear to number of
individuals.

CONCLUSION

For Mendelian (simple) traits, the Bayesian LASSO method
outperforms gBLUP and sBLUP outperforms Bayesian
LASSO in terms of prediction accuracy. For low heritability
traits, which are challenging for both Bayesian LASSO and
gBLUP, cBLUP is superior to both. Expanding the
BLUP alphabet series with sSBLUP and cBLUP enriches
prediction method options so that the best method can be
matched to the specific genetic architecture of a given trait
of interest.
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