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SUMMARY

Flowering time is one of the major adaptive traits in domestication of maize and an important selection cri-

terion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using

an extremely large multi- genetic background population that contained more than 8000 lines under multi-

ple Sino-United States environments. The population included two nested association mapping (NAM) pan-

els and a natural association panel. Nearly 1 million single-nucleotide polymorphisms (SNPs) were used in

the analyses. Through the parallel linkage analysis of the two NAM panels, both common and unique

flowering time regions were detected. Genome wide, a total of 90 flowering time regions were identified.

One-third of these regions were connected to traits associated with the environmental sensitivity of maize

flowering time. The genome-wide association study of the three panels identified nearly 1000 flowering

time-associated SNPs, mainly distributed around 220 candidate genes (within a distance of 1 Mb). Interest-

ingly, two types of regions were significantly enriched for these associated SNPs – one was the candidate

gene regions and the other was the approximately 5 kb regions away from the candidate genes. Moreover,

the associated SNPs exhibited high accuracy for predicting flowering time.

Keywords: maize (Zea mays L.), flowering time, genome-wide association study (GWAS), linkage analysis,

nested association mapping (NAM).

INTRODUCTION

Since the domestication of maize from Balsas teosinte (Zea

mays ssp. parviglumis) in the Mexican highlands approxi-

mately 9000 years ago, the area planted to this crop has

been expanding (Matsuoka et al., 2002). During its spread

throughout the world, maize has evolved to adapt to

diverse ecological conditions. Flowering time reflects a

plant’s adaptive response to its environment through floral

transition to local conditions and is considered a major

adaptive trait and an important selection criterion in plant

breeding (Jung and M€uller, 2009). Thus, post-domestica-

tion and breeding selection have driven the plant’s diverse

range of flowering times, which optimize growth under

given local conditions (Elzinga et al., 2007).

Flowering time has been extensively studied in several

plant species (Izawa et al., 2003; Andersen et al., 2004;

Jung and M€uller, 2009; Kong et al., 2010). Hundreds of

flowering time genes have been identified in Arabidopsis

and used to construct the genetic regulatory network

(GRN) (Ehrenreich et al., 2009; Jung and M€uller, 2009; Bra-

chi et al., 2010; Chen et al., 2012). Maize exhibits high

levels of genetic diversity (Wright et al., 2005) and a wide

variety of flowering times, ranging from 35 to 120 days

(Colasanti and Muszynski, 2009). Recently, several major

genetic components that regulate maize flowering time,

for example Vgt1 (Salvi et al., 2007) and ZmCCT (Hung

et al., 2012; Yang et al., 2013), have been positionally
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cloned. A conceptual GRN model for maize flowering time

that includes more than 40 genes was also proposed using

data from maize, grass and Arabidopsis (Dong et al., 2012).

However, many more genes are involved, as demonstrated

by the 62 consensus quantitative trait loci (QTLs) that have

been identified in maize from multiple genetic back-

grounds (Chardon et al., 2004). Therefore, additional

genetic components must be dissected and fitted to pro-

duce a more complete and accurate GRN model of maize

flowering time.

Previously, a large nested association mapping (NAM)

population, including 5000 recombinant inbred lines (RILs)

from 25 crosses between diverse inbred lines and a com-

mon parent (B73), was used to investigate the genetic

architecture of maize flowering time (Buckler et al., 2009).

The results of this study provided evidence that maize

flowering time can be predicted by a model of numerous

small additive QTLs. Thus, a diverse germplasm panel that

include as many variants of these genes as possible is cru-

cial for the thorough dissection of the genetic architecture

of flowering time and its prediction in breeding programs.

In this study, we used three maize germplasm panels: (i)

the highly genetically diverse NAM population with 5000

RILs described above (US-NAM) developed in the United

States, (ii) another genetically independent maize NAM

population with 2000 RILs developed in China (CN-NAM),

and (iii) a natural association panel with 1745 inbred lines

(Ames) to identify the genetic components of maize flower-

ing time. Our ultimate objective was to identify new

genetic information to support construction of an

improved flowering time GRN, thereby increasing the pre-

diction accuracy of this complex trait.

RESULTS

Phenotyping of flowering time

Maize flowering time was measured for both male and

female flowers as days to anthesis (DA) and days to silking

(DS), respectively. The anthesis–silking interval (ASI) was

derived from the difference between DA and DS. These

flowering time traits were measured for US-NAM, CN-

NAM and Ames in multiple environments, defined as com-

binations of years and locations.

The US-NAM consists of 5000 RILs from 25 original

crosses between diverse inbred lines and a common par-

ent, B73, and was developed in the United States. Among

the 13 environments evaluated for the US-NAM, eight were

measured in the United States and reported previously

(Buckler et al., 2009). The other five environments were

measured in China. The environmental locations varied

from subtropical to temperate conditions (Data S1 in Sup-

porting Information).

The flowering time measurements under multiple envi-

ronments were analyzed in two ways. First, we used the

best linear unbiased predictions (BLUPs) of the US-NAM

RILs, derived across 13 environments, with a mixed model

(Brown et al., 2011). These BLUPs were used as the overall

performance of each RIL across environments. The broad

sense heritabilities of DA, DS and ASI of the US-NAM

across all 13 environments were 93, 92 and 80%, respec-

tively. Second, we used the sensitivities of RILs across

environments, which were defined as variation in flower-

ing time among the 13 environments, to reflect the envi-

ronmental response of each US-NAM RIL. We derived the

coefficient of variation (CV) for both DA (DACV) and DS

(DSCV). These coefficients varied from 12.41 to 17.15% for

DACV and from 13.17 to 17.40% for DSCV (Data S2). High

correlation was observed between DACV and DSCV

(R2 = 0.61). We observed that RIL families with tropical par-

ents had higher variation in flowering time than those from

temperate parents. The DACV and DSCV means for tropical

RILs were 16.1 and 16.5%, respectively. Comparatively, the

DACV and DSCV means for temperate RILs were 14.8 and

14.3%, respectively.

The CN-NAM consists of 2000 RILS from the crosses

between 11 diverse inbred lines and a common parent

(HZS) (Li et al., 2013). All 12 parents of the CN-NAM origi-

nated from a minimum core collection of maize inbred

lines in China (Wang et al., 2008). Compared with the US-

NAM, the common parent and the majority of the other

parents of the CN-NAM were from local Chinese temperate

germplasm. The number of RILs in CN-NAM families ran-

ged from 151 to 184, with an average of 178 (Data S3).

These RILs were phenotyped at three locations across

2 years, for a total of six environments (Data S1). Similar

to the US-NAM, ASI was derived from DA and DS. BLUPs

and CVs of RILs were estimated across the six environ-

ments. Broad sense heritabilities were 91%, 90% and 86%

for DA, DS, and ASI, respectively. The family means of CVs

ranged from 14.35 to 17.03% for DACV and from 15.31 to

18.99% for DSCV (Data S3). We observed a strong correla-

tion between DACV and DSCV (R2 = 0.71).

The Ames panel consists 1745 inbred lines from the

North Central Regional Plant Introduction Station (NCRPIS)

of the US Department of Agriculture’s Agricultural

Research Service (USDA-ARS), located in Ames, IW, USA.

The BLUPs on growing degree days DS (GDD-DS) of the

Ames lines were previously estimated across three envi-

ronments by Romay et al. (2013). Flowering times for these

Ames lines were measured in Beijing, China, in 2012 (Data

S1). We observed a strong correlation between DS mea-

sured in China and GDD-DS measured in the US

(R2 = 0.81).

Genotyping of germplasm

The genotypes of CN-NAM (http://www.panzea.org/ or

http://www.cgris.net/maize/data1/index.htm), US-NAM and

Ames (http://www.panzea.org/) contained a total of 0.95
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million single-nucleotide polymorphisms (SNPs). These

genotypes were obtained from the platform of genotyping-

by-sequencing (GBS) in GBS BUILD v.2.7 by the Buckler Lab

at Cornell University (http://www.maizegenetics.net/).

Using the GBS data, Li et al. (2015) constructed high-den-

sity genetic maps, which consisted of 4932 bin markers for

CN-NAM and 5296 bin markers for US-NAM. An evaluation

of relationships among the founder lines of the two NAM

panels revealed a distinct genetic architecture for each

common parent and the other founder inbred lines (Rod-

gers-Melnick et al., 2015). Thus, the CN-NAM represents

the genetic diversity of the Chinese local germplasm and

possesses genetic characteristics that are distinct from

those of the US-NAM (Wang et al., 2008; Li et al., 2013;

Rodgers-Melnick et al., 2015).

Parallel linkage analyses identified common and specific

QTLs

The QTLs of all five flowering time traits (DA, DS, ASI,

DACV, DSCV) for each RIL family were initially mapped

using the inclusive composite interval mapping (ICIM)

method (Wang, 2012). Using ICIM, a total of 173 QTLs for

CN-NAM and 480 QTLs for US-NAM were identified (Fig-

ure S1, Data S4).

We conducted QTL mapping (Figure S2) by using the

joint stepwise regression (JSR) method (Buckler et al.,

2009). The identified QTLs were further evaluated by a

two-dimensional examination approach (Broman and Sen,

2009). This approach tested whether a short chromosome

region (<10 Mb) with a high logarithm of odds (LOD) value

in JSR should be treated as one functional unit or as

neighboring multi-units. Through this process, we were

able to distinguish two major QTLs on chromosome 8

within a region of less than 9 Mb for both CN-NAM and

US-NAM (Figure S3). Previously, this region was hypothe-

sized to contain two linked QTLs (Buckler et al., 2009).

For US-NAM, we identified 48, 46 and 39 QTLs that

explained 89%, 88% and 63% of the total phenotypic vari-

ance for DA, DS and ASI, respectively, by using a full addi-

tive QTL model (Table 1). Compared with the mapping

results of low-density markers (Buckler et al., 2009), our

results explained a similar phenotypic variance, but identi-

fied about 30% more QTLs. For CN-NAM, the total number

of identified QTLs for DA, DS and ASI was approximately

60% of the total number of QTLs identified in US-NAM

(Table 1). The overlaps of confidence intervals were 62, 68

and 37% between CN-NAM and US-NAM for DA, DS and

ASI, respectively. The analysis of traits associated with

environmental sensitivity in CN-NAM revealed 10 QTLs

each for DACV and DSCV that explained 44 and 51% of the

total phenotypic variation, respectively. There were 15

DACV and 13 DSCV QTLs identified in the US-NAM. These

QTLs explained 46% and 45% of the total variation for

DACV and DSCV, respectively. Four of the QTLs over-

lapped between CN-NAM and US-NAM.

According to the overlapped QTLs across five traits, 55

flowering time-related regions were identified for CN-NAM

and 75 for US-NAM (Data S5). There were 40 regions over-

lapped between the two NAM panels. The rest of the

regions were CN-NAM specific (15) and US-NAM-specific

(35). Additionally, 29 regions, including the region contain-

ing the well-known photoperiod-related gene ZmCCT on

chromosome 10, were identified to be associated with the

environmental sensitivity of maize flowering time.

It is a common method to measure QTL pleiotropy as

the overlap of QTLs among different traits. We investigated

the overlapped QTLs among different traits in CN-NAM

and US-NAM separately (Figure 1, Data S5). We found that

more than 83 and 89% of the flowering QTLs were shared

by at least two flowering time traits in CN-NAM and US-

NAM, respectively. Six CN-NAM and 25 US-NAM QTLs

were shared by at least three flowering traits. There were

five QTL regions (one for CN-NAM and four for US-NAM)

shared by all five traits. We also found that most of the

environmental response QTLs were shared with flowering

time QTLs. There were only a few QTLs that are specific

for DACV (four for CN-NAM and zero for US-NAM) and

DSCV (four for CN-NAM and one for US-NAM). This result

suggests a dependent regulatory mechanism for the envi-

ronmental response of maize flowering time.

Genome-wide association studies of CN-NAM, US-NAM

and Ames for flowering time traits

Genome-wide association study (GWAS) analyses were

performed to test the marker–trait associations of each

flowering time trait for each panel. The analyses were

repeated with partial random sampling using a bootstrap

strategy. By using a bootstrap posterior probability (BPP)

criterion of 0.05 (Valdar et al., 2006; Tian et al., 2011), we

detected a total of 2501 marker–trait associations (CN-NAM

851, US-NAM 999, Ames 651) (Data S6). Under a stricter

threshold of BPP ≥ 0.20 for single SNPs or a 5-Mb region

with more than one SNP with BPP < 0.2 but ≥0.05, we iden-

tified 950 flowering time-associated SNPs (CN-NAM 340,

Table 1 Number of quantitative trait loci (QTL) identified in CN-
NAM and US-NAM

Trait CN-NAM US-NAM Overlap

DA 29 48 18
DS 25 46 17
ASI 22 39 8
DACV 10 15 4
DSCV 10 13 4
Flowering time region 55 75 40

Three traits were derived from days to anthesis (DA) and days to
silking (DS). The anthesis–silking interval (ASI) was defined as
DA � DS. The coefficients of variation of DA and DS are denoted
as DACV and DSCV, respectively.

© 2016 The Authors
The Plant Journal © 2016 John Wiley & Sons Ltd, The Plant Journal, (2016), 86, 391–402

Intensively studied maize flowering time 393

http://www.maizegenetics.net/


US-NAM 367, Ames 243) (Figure 2). Although the associ-

ated SNPs clustered within very short regions and barely

overlapped across different populations (only four SNPs

were shared by CN-NAM and US-NAM; only two SNPs

were shared by US-NAM and Ames), they confirmed the

results of linkage analyses well.

Most of the associated SNPs were overlapped with the

QTLs with P < 0.001 (Figure 3). For CN-NAM, US-NAM and

Ames, 213 (63%), 261 (71%) and 128 (53%) of the associ-

ated SNPs, respectively, were distributed within the CN-

NAM and US-NAM flowering time QTL regions. Among all

CN-NAM and US-NAM QTLs, only two did not include

associated SNPs. There were 31 QTLs (15 in CN-NAM and

16 in US-NAM, with 11 overlapping) that contained at least

10 associated SNPs. Therefore, we obtained consistent

results from QTL mapping and GWAS.

Cross-validation

To evaluate how well a phenotype in one panel can be pre-

dicted by the associated SNPs identified in another panel,

we conducted cross-validation among the three panels. For

example, to evaluate the associated SNPs of CN-NAM in

US-NAM, we re-estimated the effect of these SNPs in US-

NAM with five-fold cross-validation. For each cross-valida-

tion test, 80% of US-NAM RILs were treated as the reference

group and the other 20% were treated as the inference

group. The effects of SNPs were estimated in the reference

group by using the random-regression best linear unbiased

prediction (RR-BLUP) method (Endelman, 2013). The esti-

mated effects were used to predict the phenotypes of RILs

in the inference group to evaluate the accuracy of prediction

as the correlation between observed and predicted values.

We repeat the process to another 20% of RILs as inference

group, until all individual had their predictions. We

repeated the process 100 times. For the purpose of evaluat-

ing model fit, the validation of a panel by its own associated

SNPs was also performed using the same process. The

results are illustrated in Figure S4.

We observed that the associated SNPs of US-NAM (367

SNPs) and Ames (243 SNPs) explained each other well

(mean R2 of 59% for US-NAM by Ames and 51% for Ames

by US-NAM). This result is expected because the NAM

founders are part of the Ames panel. In contrast, we

observed that the associated SNPs of the US-NAM and

Ames panels poorly explained CN-NAM (mean R2 of 19%

by US-NAM and 21% by Ames), and vice versa. When the

associated SNPs of CN-NAM (340 SNPs) were fitted to US-

NAM and Ames we also observed relatively lower genetic

contributions (mean R2 of 51% for US-NAM and 39% for

Ames).

Independent validation

We used a published dataset (Romay et al., 2013) that had

1515 lines overlapped with our data. The published data

contained genotypes and GDD-DS that is highly correlated

to DS. There also were additional 835 inbred lines, not con-

tained in the Ames panel (Romay et al., 2013), that can be

used to perform an independent validation. Among the

835 lines, 401 lines were mainly composed of tropical

lines. The other 434 lines appeared to exhibit a population

structure similar to that of the 1515 lines in the Ames panel

(Figure S5).

The independent validation was performed in the similar

way to the cross-validation, during which the overlapped

1515 Ames lines were treated as the reference group and

the independent 835 lines were treated as the inference

group. We predicted the phenotypes of 835 lines by using

the 243 associated SNPs identified from the 1515 Ames

lines. We then compared the predictions with the actual

observations. We observed an R2 of 0.54 in a linear correla-

tion between the observations and the predictions across

the 835 lines. As expected, we found that the 243 associ-

ated SNPs of Ames could predict the 434 structurally

related lines reasonably well (R2 = 51%). But, these SNPs

were unable to predict the 401 tropical lines (R2 = 5%)

which are distantly related to the Ames panel (Figure S6).

(a) (b)

Figure 1. Number of quantitative trait loci (QTLs)

shared among five flowering time traits.The QTL

analyses were performed in CN-NAM (a) and US-

NAM (b) separately. The five flowering time traits

are (1) days to anthesis (DA), (2) days to silking

(DS), (3) anthesis–silking interval (ASI), (4) coeffi-

cient of variation of DA (DACV) and (5) coefficient

of variation of DS (DSCV).
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Enrichment in maize flowering time candidate genes

Based on a literature search, a total of 919 maize flowering

time candidate genes (Data S7), including cloned genes

and homologs of other plants, were preliminarily selected

to conduct enrichment analyses (Danilevskaya et al., 2008;

Chen et al., 2012; Dong et al., 2012; Hung et al., 2012).

Annotations of all selected genes were transferred from

MaizeGDB (http://www.maizegdb.org/). We calculated the

distances between the associated SNP and the candidate

genes. The null distribution was derived from the distance

between these associated SNPs and the same number of

genes selected randomly from each chromosome. One

thousand replicates were performed to derive the null dis-

tribution.

Notably, there were two regions that were enriched the

most. One is the genic regions of the flowering time candi-

date genes. The other is the region about 5 kb away from

the genic regions of candidates (Figure 4). We found that a

total of 20 associated SNPs fell into the genic regions of can-

didates, including RAP2.7, which encodes an AP2-like

Figure 2. Overlap between quantitative trait loci (QTLs) and the associated single nucleotide polymorphisms.The linkage analyses were performed on CN-NAM

and US-NAM populations. Association studies were performed on the Ames panel and the two NAM panels. The strength of association is demonstrated as the

bootstrap posterior probability (BPP). The locations of QTLs and associated loci are displayed for each chromosome, trait and panel. BPP is illustrated by the

scale on the upper panel for CN-NAM and the lower panel for US-NAM, and circle size in the middle panel for Ames. BPP is differentiated by color for different

traits. Flowering time-related regions of all traits are presented by black solid lines in the upper and lower panels for CN-NAM and US-NAM, respectively.
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transcription factor (Salvi et al., 2007). We also found that 21

associated SNPs fell into the 5-kb non-genic region of candi-

dates, including the well-known ZCN8 (located 3.2 kb down-

stream, with a BPP of 0.97 in Ames) (Meng et al., 2011).

The enriched causal candidates were expected to be

responsible for the phenotypic polymorphism. In our

study, a total of 220 candidates were hit within a 1-Mb

region of associated SNPs (Data S8). Among them, 64%

(140) were hit by at least two panels and 14% (31) were hit

by all three panels. We also observed that 66% of the 220

candidates (145) were homologous with flowering time

genes of Arabidopsis (Chen et al., 2012). Additionally, from

the 220 candidates, we identified 17 of the 45 genes within

a proposed flowering time GRN. These 17 included genes

involved in the autonomous, integrator, photoperiod, circa-

dian clock and light transduction pathways (Dong et al.,

2012) (Data S8).

DISCUSSION

Flowering time variants largely determine environmental

sensitivity in maize

A steady flowering time, which reflects insensitivity to

environmental changes, is an important selection criterion

in maize breeding. Generally, photoperiod greatly affects

the environmental response of maize flowering time (Buck-

ler et al., 2009; Hung et al., 2012; Yang et al., 2013). Never-

theless, it is still difficult to distinguish the effects of other

environmental factors on flowering time (Chen et al.,

2014). Therefore, our study calculated the CVs of DA and

DS to estimate the general response of maize flowering

time to photoperiod and other environmental factors (accu-

mulated temperature, rainfall, etc.). Our objective was to

provide additional clarity about the genetic architecture of

this complex trait.

ZmCCT, a homolog of the rice photoperiod response

gene Ghd7 (Xue et al., 2008), has been proposed as one of

the most important genes affecting photoperiod response

in maize (Hung et al., 2012). A transposable element (TE)

within the ZmCCT promoter can markedly reduce flower-

ing time and photoperiod sensitivity (Yang et al., 2013).

Among the parents of US-NAM, our results revealed four

(CML228, CML227, Ki11, and Ky21) with ZmCCT alleles

(Hap4 and Hap5, without TE insertion) that increase flower-

ing time and photoperiod sensitivity (Data S2) (Yang et al.,

2013). With the exception of the RIL family B73 9 Ky21, the

other three RIL families (B73 9 CML228, B73 9 CML277

Figure 3. Enrichments of associated single nucleotide polymorphisms

(SNPs) on flowering time quantitative trait loci (QTLs).The enrichments

were conducted in CN-NAM and US-NAM separately. The enrichments are

demonstrated as the difference between observed (blue) and expected (red)

proportions of associated loci landing within QTLs for all traits. The

expected proportion was derived from randomly selected markers in an

amount equal to that of the observed loci. The random process was repli-

cated for 1000 times. The standard errors were used for statistical tests and

are displayed for the corresponding expectations.

Figure 4. Enrichment of associated single nucleotide polymorphisms (SNPs) on flowering time candidate genes.In total, 950 associated SNPs were identified

and 919 flowering time candidate genes were selected. Enrichment was defined as the ratio of observed to expected numbers of paired associated SNPs and

nearby candidate genes within a specified distance. The expected numbers were derived from the same associated loci and randomly selected candidate genes

in an amount equal to that of the true candidate genes. The random process was performed 1000 times. The numbers of paired associated loci and nearby can-

didate genes were recorded for distances varying from 0 to 5 Mb. Standard errors were calculated and are displayed correspondingly.

© 2016 The Authors
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and B73 9 Ki11) exhibited obvious environmental sensitiv-

ity and high flowering time variation, ranking first, third

and sixth for DSCV, respectively, among all US-NAM RIL

families. For these three families, we also obtained linear

correlations between DS and DSCV (R2 > 0.1) for their RILs,

thereby indicating that ZmCCT can simultaneously affect

both flowering time and environmental sensitivity. For all

12 parents of CN-NAM, only the inbred line of QI319 had

tropical pedigrees (Teng et al., 2004). This line possessed

the sensitive ZmCCT allele and also exhibited the highest

environmental sensitivity in terms of both DA and DS (Data

S3).

In addition to those with sensitive ZmCCT alleles, other

RIL families also exhibited both a long flowering time and

high environmental sensitivity. For example, the RIL family

B73 9 CML52 had the longest flowering time, the highest

DACV value and the second highest DSCV value. Conse-

quently, more genes likely play a role in the performance

of environmental sensitivity in maize and in the adaptive

response of maize to diverse climatic effects. Moreover,

we hypothesized that these genes either simultaneously

influence flowering time and its environmental sensitivity

(similar to ZmCCT) or only affect one of these traits.

Based on the integrated results of our two NAM panels,

a total of 29 environmental sensitivity-related flowering

time regions were detected (Data S5). However, we

observed that most of these regions overlapped with the

QTLs of the other three flowering time traits, DA, DS and

ASI (Figure 1). Thus, we suggest that the genetic compo-

nents of DA or DS play a determining role in the initiation

of maize flowering time and also largely affect its environ-

mental response.

Among the mapped QTL, we observed five pleiotropic

loci that affected all five flowering time traits (Figure 1,

Data S5). These loci included two major QTLs that cover

the well-known maize flowering time genes ZCN8 on chro-

mosome 8 (Meng et al., 2011) and ZmCCT on chromosome

10 (Hung et al., 2012; Yang et al., 2013). Moreover, we

observed another QTL related to all five flowering time

traits on chromosome 9 that appeared to exert marked

effects on DACV and DSCV for both CN-NAM and US-NAM

(Figure S2). We hypothesized that this QTL contained

another major component or gene cluster that affects both

maize flowering time and its environmental response.

At least 90 genetic components determine maize

flowering time diversity

High heritabilities were obtained for the flowering time

traits of both CN-NAM and US-NAM populations across

multiple environments. Therefore, we expected the BLUPs

across all identified environments to greatly decrease the

effects of genotype 9 environment (g 9 e) interaction,

allowing us to compare mapped results between CN-NAM

and US-NAM. Applying a joint linkage mapping strategy to

the NAM population, using the nested family and marker

model, provides high dissection power for complex quanti-

tative traits – particularly when marker density is high

(Buckler et al., 2009). In this study, 55 and 75 flowering

time regions (or QTL clusters) for CN-NAM and US-NAM,

respectively, were identified. Forty of these regions were

found in both NAM panels, resulting in a total of 90 flower-

ing time regions for the two panels combined. Therefore,

27% of the CN-NAM flowering time regions (15 of 55) and

47% of the US-NAM flowering time regions (35 of 75) were

panel-specific. Consequently, we concluded that both com-

mon and specific flowering time regions determine maize

flowering time for the two NAM panels.

Integration of the mapping results (both QTL mapping

and GWAS) among the three independent panels provided

both validation and complementary information for the

dissection of the genetic architecture of maize flowering

time. We observed multiple regions that contained both

the QTLs and the intensively clustered associated SNPs

across the three panels, including those regions with well-

known flowering time components (ZCN8 and Vgt1 on

chromosome 8 and ZmCCT on chromosome 10) (Meng

et al., 2011; Hung et al., 2012; Yang et al., 2013).

Marker-assisted recurrent selection (MARS) or genome

selection (GS) is very helpful in crop breeding (Johnson,

2004). Thus, whether flowering time-associated SNPs can

be used in the prediction of maize flowering time is an

important question. In this study, the detected associated

SNPs appeared to exhibit high predictive power for flower-

ing time of genotypes with similar genetic backgrounds. In

contrast, their predictive power for the tropical lines was

poor, but may have been partly caused by a deviation in

the breeding value estimation of the SNPs. This deviation

could have originated from the limited freedom of the ref-

erence group or the existence of new rare variants in the

tropical lines not contained by the Ames panel.

The enriched candidate genes provide valuable

information for the construction of flowering time GRN in

maize

Growing evidence supports the view that mutations in

gene regulatory regions play significant roles in functional

variants (Wray, 2007; Schaub et al., 2012). In maize, Wal-

lance et al. (2015) found that most variance could be

explained by genic (within the gene region) and gene-prox-

imal SNPs (at about 1–5 kb away from genes and likely

positions of promoters and other short-range regulatory

elements). In our study, we observed two obvious enrich-

ment peaks within the genic and about 5-kb proximal

regions of the candidate genes (Figure 4). Therefore, in

addition to mutations within candidates, our findings pro-

vide additional evidence that variants at about 5-kb regions

away from genes also significantly affect the performance

of maize flowering time.
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Hundreds of flowering time genes have been studied in

plants. In Arabidopsis, the FLOWERING LOCUS T (FT) and

TERMINAL FLOWER1 (TFL1) genes, which constitute a type

of phosphatidylethanolamine-binding (PEBP) gene, play

important roles in floral transition (Fornara et al., 2010; Pin

and Nilsson, 2012). In our study, among the 24 PEBP-like

genes in maize (Izawa et al., 2003), nine were hit within the

1-Mb region of the flowering time-associated SNPs loca-

tions (the distance of the SNP from the candidate ranged

from 3.2 to 670.2 kb and averaged 324.5 kb). These hits

included six FT-like genes (ZCN8, ZCN13, ZCN16, ZCN20,

ZCN24, ZCN26), two TFL-like genes (ZCN5, ZCN6) and one

MFT-like gene (ZCN10).

The genes related to photoperiod play important roles in

the expression of FT-like genes in a conceptual GRN model

for maize flowering time (Dong et al., 2012). The CON-

STANS (CO) protein, which strongly influences the perfor-

mance of maize flowering time in response to

photoperiod, directly induces the transcription of FT-like

genes in Arabidopsis (Srikanth and Schmid, 2011; Pin and

Nilsson, 2012). Eight CO-like candidates were hit within a

1-Mb region of the locations of flowering time-associated

SNPs (the distance of the SNP from candidates ranged

from 0 to 912.7 kb and averaged 174.9 kb). These hits

included ZmCCT (Hung et al., 2012; Yang et al., 2013),

CONZ1 (Miller et al., 2008; Dong et al., 2012; Hung et al.,

2012), COL3, COL6 and COL7 (Yilmaz et al., 2009) and three

homolog candidates (GRMZM2G176173, GRMZM2G

148772, GRMZM2G004483).

Gibberellin (GA) is an endogenous plant growth hor-

mone that can affect FT-like gene expression under both

long-day and short-day conditions (Osnato et al., 2012;

Song et al., 2012). Considering the GA pathway, three

MYB-like genes (MYB74, MYB98 and MYB69) that posi-

tively regulate the expression of the GA biosynthesis gene,

GA20ox1, in Arabidopsis (Song et al., 2012) and five GA

receptor-like candidates (GRMZM2G012546, GRMZM2G

173630, GRMZM2G406014, GRMZM2G006716, and

GRMZM2G164454) were also hit within a 1-Mb region of

flowering time-associated SNPs (the distance of the SNP

from candidates ranged from 46.4 to 676.9 kb and aver-

aged 243.1 kb).

MADS-box genes encode a family of transcription fac-

tors that take part in diverse developmental processes in

flowering plants. We identified 10 MADS-box genes

(MADS9, MADS20, MADS21, MADS41, ZMM4, ZMM5,

ZMM6, ZMM29, ZAG1 and GRMZM2G099522) (associated

distance of the SNP from candidates ranged from 4.1 to

807.5 kb and averaged 339.9 kb). Among these genes

ZMM4, a homolog of SUPPRESSOR OF OVEREXPRESSION

OF CONSTANS (SOC1) in Arabidopsis (Malcomber et al.,

2006) and OsMADS56 in rice (Ryu et al., 2009), has been

hypothesized to participate in the floral transition in the

flowering time GRN in maize (Dong et al., 2012). The ZAG1

gene has been hypothesized to participate in floral devel-

opment in maize (Thompson, 2009).

For the other flowering-regulating factors, we also hit

seven EARLY FLOWERING-like candidates connected with

maize flowering time (GRMZM2G401342, GRMZM2G

161913, GRMZM2G008765, GRMZM2G045275, AC233870.

1_FG003, GRMZM2G025646, GRMZM2G359322) (the asso-

ciated SNP distance ranged from 0 to 686.8 kb and aver-

aged 226.7 kb). The translation products of these candidate

genes are directly bonded to the GI protein (Kim et al.,

2013). Three clock pathway genes (GRMZM2G033962,

ZmPRR37 and ZmPRR73), two light transduction pathway

genes (PHYB1 and PHYB2) (Dong et al., 2012) and eight

SQUAMOSA PROMOTER BINDING PROTEIN-like (SPL)

(Wu et al., 2009) aging pathway genes (LG1, SBP3, SBP8,

SBP17, SBP20, SBP27, SBP29 and TSH4) (Yilmaz et al.,

2009) were also hit (the associated SNP distance ranged

from 0 to 629.1 kb and averaged 187.9 kb).

A large-scale population with a multiple genetic

background provides increased power for detecting the

regulating components of flowering time

Together, population size and structure, marker density

and target trait architecture determine the power of a

GWAS. In our study, a triple GWAS of the three large-scale

panels, which broadly cover both US and Chinese maize

germplasm, provided multiple examinations of the genetic

components of maize flowering time. We expected to

observe complementary results among the panels. Indeed,

we detected two major flowering time regions (simultane-

ously related to DA, DS, ASI, DACV and DSCV) encompass-

ing a distance of 23.2–49.0 Mb (US-NAM) and 41.1–
81.1 Mb (CN-NAM) on chromosome 9. Through GWAS,

two neighboring candidates, a photoperiod pathway gene

CONZ1 (34.6 Mb on chromosome 9) (Miller et al., 2008)

and a FT-like gene ZCN26 (76.3 Mb on chromosome 9),

were also detected.

In contrast, between the regions of CONZ1 and ZCN26

(described above), another strong association signal was

also detected (59.8 Mb on chromosome 9) in the Ames

panel (with the highest BPP of 0.81). Neighboring this loca-

tion was the ARABIDOPSIS THALIANA HOMEOBOX1-like

(ATH1) gene HB21 (which regulates GA biosynthesis and is

related to flowering time) (Proveniers et al., 2007). Other

examples of differences among the panels were associa-

tion signals detected for three clustered candidates

(GRMZM2G336909, TCPTF8 and BHLH32) located within an

intensively studied QTL region of 156–162 Mb on chromo-

some 3 (Buckler et al., 2009). The central candidate,

TCPTF8 (AtTCP20-like gene) (Li et al., 2005), was detected

in both CN-NAM (519 kb upstream, with a BPP of 0.86) and

Ames (937 kb downstream, with a BPP of 0.97). In US-

NAM, GRMZM2G336909 contained a SNP with a BPP of

0.48. In Ames, BHLH32 was neighbored by a SNP with a

© 2016 The Authors
The Plant Journal © 2016 John Wiley & Sons Ltd, The Plant Journal, (2016), 86, 391–402

398 Yong-xiang Li et al.



BPP of 0.75 (503 kb upstream). Thus, TCPTF8 might be the

most reliable candidate in this region, but the two neigh-

boring candidates may also affect flowering time in the dif-

ferent panels.

Moreover, we also observed the existence of several

regions with strong associations, but without distributions

of candidates or homologs. Such regions included 81–
84 Mb on chromosome 1 (with the highest BPP of 0.68 in

Ames), 31–40 Mb on chromosome 3 (with the highest BPP

of 0.53 in US-NAM), 64–69 Mb on chromosome 4 (with the

highest BPP of 0.82 in US-NAM), 142–143 Mb on chromo-

some 5 (with the highest BPP of 0.54 in CN-NAM) and 80–
82 Mb on chromosome 6 (with the highest BPP of 0.81 in

Ames). This finding suggests that these regions might con-

tain additional unique genetic components or variants in

the GRN of maize flowering time, which presumably are

currently unknown.

In general, the genome-wide identification of 90 flower-

ing time regions discloses a type of parallelism for the pro-

posed model of numerous, additive small-effect QTLs that

determine maize flowering time (Buckler et al., 2009).

Importantly, for those 220 candidates hit within a 1-Mb

region of the associated SNPs, most appeared in the form

of multi-homologs, such as the PEBP-like, CO-like, SBP-like

and MADS-box genes. This finding reveals an added com-

plexity to maize flowering time regulation, but is meaning-

ful to the broad local adaptation of diverse maize

germplasm.

However, the detection of marker–trait associations

mainly depends on linkage disequilibrium (LD) between

marker polymorphism and functional mutants. Detection is

also influenced by other factors, including marker density,

marker polymorphism information content (PIC), genetic

background and the GWAS model. Therefore, in the future,

complete sequence variants from the pan-genome of a

large-scale panel (Tettelin et al., 2005) – combined with

multi-temporal–spatial expression profile information of

diverse germplasms (obtained through RNA sequencing) –
will advance the complete dissection of the maize flower-

ing time GRN and other complex quantitative traits to

improvements in food production.

EXPERIMENTAL PROCEDURES

Plant materials and phenotyping

Three maize panels, including two NAM population panels and
one natural association panel, were used in this study. One of the
NAM population panels was developed by Cornell University in
the United States (US-NAM) and includes 5000 RILs from crosses
of 25 diverse inbred lines: B97, CML52, CML69, CML103, CML228,
CML247, CML277, CML322, CML333, Hp301, Il14H, Ki3, Ki11, Ky21,
M37W, M162W, Mo18W, MS71, NC350, NC358, Oh43, Oh7B, P39,
Tx303 and Tzi8, with the common parent ‘B73’ (Yu et al., 2008).
The other NAM population panel was developed by the Chinese
Academy of Agricultural Sciences (CN-NAM) and includes 1971

RILs from 11 crosses of 11 diverse inbred lines: Zheng58, Ye478,
Qi319, Weifeng322, Lv28, Pa405, Duo229, K12, Mo17, Huobai and
Huangyesi3, with the common parent ‘HZS’ (Li et al., 2013). To
capture more genetic diversity, a natural association panel (Ames)
with 1745 inbred lines from the USDA-ARS NCRPIS was also used
(Romay et al., 2013).

US-NAM has been phenotyped under eight environments in the
United States (Buckler et al., 2009). The flowering times of 4763
US-NAM lines were recorded at the following five additional loca-
tions in China in 2010 and 2011: (i) Hainan (18.15°N, 109.30°E)
(10HN), (ii) Tongnan in Chongqing Province (30.03°N, 106.22°E)
(11CQ), (iii) Xinxiang in Henan Province (35.19°N, 113.53°E)
(11XX), (iv) Tianjin (39.40°N, 117.05°E) (11TJ), and (v) Beijing
(39.48°N, 116.28°E) (11BJ). CN-NAM was phenotyped at the fol-
lowing three locations in China in 2009 and 2010, as described by
Li et al., 2013: (i) Xinxiang in Henan Province (35.19°N, 113.53°E)
(09XX and 10XX), (ii) Beijing (39.48°N, 116.28°E) (09BJ and 10BJ),
and (iii) Urumqi in Xinjiang Province (43.47°N, 87.39°E) (09XJ and
10XJ). In contrast, the Ames panel was repeatedly observed at
Beijing, China (39.48°N, 116.28°E) in 2011 (11BJ).

The DA, DS and ASI were measured or calculated as
described by Buckler et al. (2009). The broad sense heritability
(h2) for DA, DS and ASI was calculated according to Buckler
et al. (2009) and Chandler et al. (2013). The BLUPs of DA, DS
and ASI for both CN-NAM (six environments) and US-NAM (13
environments) were calculated using SAS PROC MIXED, with
genotype, environment and replication as random effects
(Brown et al., 2011). The CVs of both the DA (DACV) and DS
(DSCV) for CN-NAM across six environments (three locations
across 2 years) and US-NAM across 13 environments were cal-
culated to reflect the environmental sensitivity of these two
flowering time traits. These values were calculated as CV
(%) = SD/mean, where SD and mean refer to the standard devi-
ation and mean of the DA or DS values across all of the envi-
ronments for each RIL.

The QTL mapping of CN-NAM and US-NAM

For the single-RIL-family QTL mapping of the two NAMs, the ICIM
method was used using the QTL ICI Mapping software v.3.2
(Wang, 2012). We set the P threshold at 0.001 for entering and
0.002 for removing. The LOD threshold was determined via a
1000-permutation test. Joint stepwise regressions for all five flow-
ering time traits for both CN-NAM and US-NAM were conducted
separately using SAS PROC GLMSELECT (Brown et al., 2011). The
method used stepwise regression with criteria of selection/re-
moval thresholds set to P = 1 9 10�4. The thresholds for the entry
and exit of the model terms were determined by permutation as
follows: phenotypic data were randomly permuted within each
family. All marker-by-family terms were tested and the lowest P-
value was recorded for each permutation. A total of 1000 permuta-
tions were performed. After the model was fitted with stepwise
regression, each marker was dropped from the model one at a
time and a single best marker was refitted. This process tested the
fitness of each marker using the remaining QTLs as background
and also improved the overall fit of the model to the data (Buckler
et al., 2009).

High-density markers provide the opportunity to distinguish
neighboring QTLs within a short physical distance. Meanwhile,
the general strategy of a one-dimensional genome scan has been
adopted for QTL mapping, which fits all possible single-QTL mod-
els but tends to ignore the reality of a possible tight-linked locus.
To overcome this limitation, we use the two-dimensional exami-
nation approach (Broman and Sen, 2009) to test whether a short
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chromosome region (<10 Mb) with a high LOD value in JSR
should be treated as one functional unit or neighboring multi-
units. In this process, the most significant marker within the short
region is first treated as the covariant (marker effect nested by
family) to calculate the contributions of its neighboring markers. If
significant contributions (LOD ≥ 2.5) are demonstrated by its
neighboring markers, we can hypothesize that more than one
functional unit should be contained in this region. Then, the newly
identified QTL marker (with the highest contribution among the
tested markers) is treated as the covariate to test the contributions
of the associated significant marker and its neighbors. In this
manner, the most significant marker near the previous one is
identified. We repeated these steps until the steady QTL markers
were identified within the target region. The contributions of
the neighboring markers were calculated using the following
equation: SSpop*mi = SStotal � (SSpop + SSpop*m + SSmi_residual),
where SSpop*mi is the contribution of the ith tested marker nested
family, SStotal is the sum of the total squared contributions, SSpop

is the squared contribution of the family, SSpop*m is the squared
contribution of the most significant marker nested family and
SSmi_residual is the square of the residual when both the most sig-
nificant marker and its ith neighboring marker are fitted to the
model.

After all QTL markers had been identified, confidence intervals
were estimated by sequentially examining flanking markers as
described by Poland et al. (2011). That is, the full confidence inter-
val was estimated using the flanking markers on both sides of a
QTL marker. First, the QTL marker and the flanking marker from
one side were fitted into the full linear model. The flanking marker
was considered within the 95% confidence interval when the QTL
marker lacked a significant contribution to the model (P < 0.05).
The test was repeated until the QTL marker made a significant
contribution. This procedure was then repeated for the flanking
marker on the other side of the QTL marker.

Genome-wide association studies

A compressed mixed linear model (Zhang et al., 2010) was con-
ducted in the GAPIT R package (Lipka et al., 2012) to test the
marker–trait associations of each flowering time trait for each
panel. To control false positives, a subsampling-based multiple
SNP model was applied (Valdar et al., 2006; Tian et al., 2011).
Briefly, 80% of the original entries were sampled in the new
subpopulation, without replacement, and used to fit the SNPs
with permutation-derived significance thresholds. This process
was repeated 100 times. The BPP was then calculated as the
proportion of the 100 replicates in which a trait-associated SNP
was detected (ranging from 0 to 1). By using the 1000 times
permutation test, we found that a threshold BPP of 0.05 led to a
type I error rate < 0.05 and a BPP of 0.20 led to a type I error
rate < 0.01.

Preliminarily, flowering time-associated SNPs detected in 5% or
more of the replicates (BPP ≥ 0.05) were examined as polymor-
phisms in LD with potential candidate genes. To strictly control
false discoveries, we first selected all SNPs with BPP ≥ 0.20.
Meanwhile, some regions (less than 5 Mb) contained the SNPs
that had their highest BPP values <0.20, but ≥0.05. These SNPs
were also likely be neighbored by flowering time-related func-
tional units with minor effects. Therefore, to avoid missing genetic
components with weak association signals within these regions, a
combined strategy was applied – the SNPs within a 5-Mb window
were also selected if their highest BPP values were less than 0.20.
Finally, these two sets of markers comprised the flowering time-
associated SNPs.

Overlapping test between associated SNPs and QTLs

We evaluated the overlaps between the results of GWAS and
linkage mapping by comparing locations between the flowering
time-associated SNPs and the QTLs detected in the CN-NAM
and US-NAM panels. If an associated SNP fell within a QTL
interval, we deduced that this SNP overlapped with the relevant
QTL; otherwise, we assumed no overlap. Then, we calculated
the actual intra-QTL ratio (proportion of overlapped-associated
SNPs) as the number of associated SNPs falling within QTLs
divided by the total number of associated SNPs. In addition,
different subsets of randomly selected SNPs (340 for CN-NAM,
367 for US-NAM) were sampled from 0.95 million SNPs across
the genome, with 1000 replications. The proportion of these
randomly selected SNPs falling within the QTL intervals was
calculated as described above and defined as the expected (by
chance) intra-QTL ratio.

Flowering time candidate gene enrichment tests

We hypothesized that the flowering time-associated SNPs should
be closely linked to related causal variants. The tests for signifi-
cant enrichments followed the description of Brown et al. (2011).
The number of associated SNPs for all five flowering time traits
that fell within different regions (0, 1, 2, 3, 4, 5, 10, 20, 30, 100, 300
and 500 kb, 1, 2 and 5 Mb) of candidate genes was compared with
a null distribution. The null distribution was obtained by selecting
an equivalent number of random genes and calculating their prox-
imity to the detected associated SNPs. Then, the enrichment ratio
was calculated by dividing the number of associated SNPs that fell
within a certain region by the number of randomly selected genes
that fell within that same region. This process was repeated 1000
times.
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Figure S1. Flowering time quantitative trait locus distributions of
all 36 recombinant inbred line families by inclusive composite
interval mapping and joint linkage mapping for CN-NAM and US-
NAM.

Figure S2. The mapping results for days to anthesis, days to silk-
ing, anthesis–silking interval, coefficient of variation (CV) of DA
and CV of DAS by the method of joint stepwise regression for
both CN-NAM and US-NAM.
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Figure S3. Two neighboring flowering time quantitative trait loci
on chromosome 8 can be distinguished by a two-dimensional
examination approach.

Figure S4. Cross-validation of flowering time-associated single-
nucleotide polymorphisms among CN-NAM, US-NAM and Ames
for the trait of days to silking (five-fold, 100 replicates).

Figure S5. Scatter plot of principal component 1 (PC1) versus PC2
for 1515 Ames lines within the genome-wide association (GWAS)
panel and those 835 lines outside (independent) of the GWAS
panel.

Figure S6. The 243 associated single-nucleotide polymorphisms of
Ames can predict the growing degree days days to silking of 434
genetically related lines outside (independent) of the Ames panel
very well, but were unable to predict the phenotypic value of the
401 distantly related tropical lines.

Data S1. Materials used in this study and their flowering time
observations in China.

Data S2. US-NAM recombinant inbred line family means for each
flowering time trait.

Data S3. CN-NAM recombinant inbred line family means for each
flowering time trait.

Data S4. Flowering time quantitative trait locus collection of all 36
recombinant inbred line families for the traits of days to anthesis
(DA), days to silking (DS), anthesis–silking interval, coefficient of
variation (CV) of DA and CV of DS.

Data S5. Flowering time regions identified by joint linkage analy-
sis of CN-NAM and US-NAM.

Data S6. Flowering time-associated SNPs (BPP ≥ 0.05) for CN-
NAM, US-NAM and Ames identified by genome-wide association
studies.

Data S7. List of maize flowering time candidate genes or
homologs.

Data S8. The 220 maize flowering time candidate genes or homo-
logs within a 1-Mb region of associated single nucleotide poly-
morphisms.
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