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Abstract

Accessible chromatin regions are critical components of gene regulation but modeling them directly
from sequence remains challenging, especially within plants, whose mechanisms of chromatin
remodeling are less understood than in animals. We trained an existing deep learning architecture,
DanQ, on leaf ATAC-seq data from 12 angiosperm species to predict the chromatin accessibility of
sequence windows within and across species. We also trained DanQ on DNA methylation data from
10 angiosperms, because unmethylated regions have been shown to overlap significantly with
accessible chromatin regions in some plants. The across-species models have comparable or even
superior performance to a model trained within species, suggesting strong conservation of chromatin
mechanisms across angiosperms. Testing a maize held out model on a multi-tissue scATAC panel
revealed our models are best at predicting constitutively-accessible chromatin regions, with
diminishing performance as cell-type specificity increases. Using a combination of interpretation
methods, we ranked JASPAR motifs by their importance to each model and saw that the TCP and AP2/
ERF transcription factor families consistently ranked highly. We embedded the top three JASPAR
motifs for each model at all possible positions on both strands in our sequence window and observed
position- and strand-specific patterns in their importance to the model. With our cross-species “a2z”
model it is now feasible to predict the chromatin accessibility and methylation landscape of any
angiosperm genome.

Introduction

Accessible chromatin regions (ACRs) are known to play a critical role in eukaryotic gene regulation but
their comprehensive identification in plants remains a challenge [1,2]. Current methods to assay
chromatin accessibility are highly environment-specific and relatively expensive compared to DNA
sequencing, limiting the number of species or conditions that can be investigated. Assaying chromatin
accessibility in plants comes with additional unique challenges: the cell wall makes plant nuclei hard to
isolate and many active transposon families shuffle, create, and destroy regulatory regions over time 
[3]. Regions that lack DNA methylation are known to be stable over developmental time and overlap
significantly with ACRs in plants with larger genomes [4], suggesting they may contain a superset of
ACRs across cell-types. Computational models capable of predicting chromatin accessibility and
methylation state directly from DNA sequence would enable a wide range of previously-intractable
studies on gene regulation across evolutionary time as well as estimation of non-coding variant
effects for use in contexts such as breeding. Plants also provide an excellent system to study the
genetic basis of adaptation [5]. Now that it is feasible to assemble genomes of thousands of species,
regulatory regions that control adaptation can be identified, providing valuable insight on how to
breed crops resilient to climate change. Recent advances in machine learning, particularly deep
learning, have catalyzed a vast number of applications to biological prediction, including mRNA
abundance [6,7,8], chromatin state [9,10,11], and transcription factor (TF) binding [12] directly from
DNA sequence. Many of these models have so far only been trained within a single species to predict
within the same species, usually utilizing held-out chromosomes as a test set to control for sequence
relatedness.

At a high level, plant chromatin has characteristics similar to animal chromatin: chromatin is
organized into hierarchical compartments, distal regulatory regions are colocalized to genes through
chromatin looping, and various histone modifications signal a wide variety of local chromatin states.
However, the exact mechanisms driving chromatin accessibility are known to be quite different in
terms of specific histone modifications [13], pioneer factors [14], and chromatin looping mechanisms 
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[15]. Because of these differences, plant-specific chromatin accessibility models are likely to be
necessary.

We know that transcription factor binding sites are strongly conserved across evolutionary time [16,
17] and highly enriched in ACRs [18]. Certain deep learning model architectures, such as convolutional
neural networks (CNN), have already been shown effective for predicting chromatin accessibility
within species by recognizing important motifs [9,10] and their spatial relationships [19]. Previous
work [17,20] has observed that CNNs require much larger training data sets than earlier model
architectures to achieve equivalent or better performance. By incorporating multiple species into the
training data we not only increase the number of observations but also the total evolutionary time
between observations, which reduces confounding neutral variation within conserved sequences. For
the purposes of predicting regulatory regions in unobserved plant species, training a model across
species will be critical to learn important motifs and syntax that are conserved across longer
evolutionary time periods. Therefore, we predicted that previously-published deep learning
architectures could work well across species and make accurate chromatin accessibility and
methylation predictions in related unobserved species. DanQ [10] is a recurrent CNN that has already
been shown to be able to more accurately predict a number of genomic labels, including chromatin
accessibility and DNA methylation, in the human genome than standard CNNs like DeepSEA [9].

Here, we train DanQ to predict chromatin accessibility using leaf ATAC-seq data from 12 angiosperm
species [13], comparing the performance of within-species models to across-species models. We also
train DanQ to predict unmethylated regions using methylation data from 10 angiosperm species,
including 5 previously-published grasses [4]. Using a maize single-cell ATAC (scATAC) accessibility atlas 
[21], we see that the accessibility model has similar performance across cell-types but is highly
variable across regions with different levels of cell-type specificity. Using various interpretation
methods designed for CNNs, we compare and contrast which motifs were important across
angiosperms for predicting chromatin accessibility in leaves or methylation state. Our pan-
angiosperm chromatin state models are an important stepping stone towards a better understanding
of gene regulation and adaptation.

Results

Recurrent convolutional neural networks accurately model chromatin
state across species

To train a successful chromatin state classifier, we needed to choose a window size that balanced
genomic context with resolution. We tested a few different model configurations and decided upon
600 basepair windows because higher window sizes showed diminishing returns on performance
while decreasing our effective resolution (Figure S1). We preprocessed the ATAC-Seq and
unmethylated peaks by taking the midpoint and symmetrically extending to half the window size in
both directions to obtain our postive observations. Negatives were sampled from the rest of the
genome. After preprocessing we had 26,280 training regions per species (315,360 total) for the cross-
species accessibility models and 35,652 training regions per species (356,520 total) for the methylation
models, split evenly between classes.
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Figure 1:  Performance of the cross-species chromatin state classifiers. The top middle and top right show the mean
and standard error (due to variability in the stochastic model parameter initialization processes) of the auPR for the
accessibility and methylation models, respectively, per species for both the within- and across-species training
configurations. The bottom left is the precision-recall curve across all hold-out species for the across-species models,
split by distance class and chromatin feature. The bottom middle and bottom right are the precision-recall curves for
the across-species accessibility and methylation models, respectively, split by species.

As a baseline for comparison to previous, within-species, chromatin state CNN models as well as our
across-species models, we trained within-species DanQ model configurations for each of the
angiosperm species in our data. We also trained across-species model configurations each using a
different species as a test set. Generally, we observed that a given across-species model has a
comparable, if not superior, area under the precision-recall curve (auPR) to the within-species model
(Figure 1, top middle and top right). While auPR across species varies substantially, they are also
within the range of those observed in the original DanQ and DeepSEA human models and superior to
the bag-of-kmers model in Zea mays (Figure S3). We also see that both within-species and across-
species performance decreases as genome size increases (Figure S4). When comparing the
accessibility and hypomethylation models, we see the same trends in performance for each species.

To see if the models were more accurate in predicting accessible or unmethylated regions near or
within genes, where these regions are known to be enriched, we looked at the precision-recall curves
across different distance classes (genic, proximal, or distal). Observations were labeled as genic if
more than half of the range overlapped with a gene annotation, as proximal if not genic and more
than half of the range was within the proximal cutoff (2kb), and as distal if neither genic nor proximal.
We see that the across-species models for both chromatin features perform the worst on distal
regions, but show contrasting results on the genic and proximal regions (Figure 1, bottom left). This
could be driven by the imbalanced distribution of regions between the distance classes, with
accessible regions biased towards the proximal class and unmethylated regions towards the genic
class (Figure S5). In particular, Hordeum vulgare has proportionally many more distal accessible and
unmethylated regions, which could explain the lower overall performance. The across-species
accessibility models are very precise when calling inaccessible chromatin, with most of the errors
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being false-positives, particularly in distal regions (Figure S6). We see a much different result in the
methylation model, which shows only a slight bias towards false positives.

To control for potential trans-driven transposon silencing, we tested a two-step model that takes the
predictions of the a2z model and then masks them with zeros if they overlap annotated transposons
in Z. mays. We see that these two-step repeat-masked models do much better (ΔauPR 0.15 for
accessibility and 0.07 for methylation) than the naive models (Figure S7), suggesting a relatively
straightforward way to reduce false positives in larger plant genomes with more transposon-derived
sequence.

Finally, we wanted to assess how far out in evolutionary time the angiosperm model could work. We
ran the model against ATAC-Seq data from Saccharomyces cerevisiae and a Homo sapiens GM12878 cell
line [22]. We see the plant-trained model has some ability (Figure S8) to predict chromatin accessibility
in yeast (auPR 0.21), if not human cell-lines (auPR 0.02).

Leaf-trained models struggle to predict cell type-specific accessible
chromatin regions

Figure 2:  Cross-cell type performance of the Zea mays accessibility model. The left plot shows the area under the
threshold-recall curve for each set of peaks grouped by the number of cell types they are accessible in. The right plot
shows the precision-recall curves for peaks accessible in the guard cell (best) and trichoblast (worst) cell types, as well as
peaks open in any cell type (union).

Knowing the a2z models are capable of working across species, we then asked how well the leaf-
trained accessibility models could work across cell types. We used scATAC-Seq data from six maize
organs [21] as a multi-cell type test set for our single-tissue model. Using a model trained on every
species with ATAC-seq data except Z. mays, we predicted the accessibility of each scATAC peak as well
as negatives sampled from the rest of the genome. Looking at the area under the threshold-recall
curve we see that the model does better on peaks that are accessible across many cell types, with a
sharp decrease in peaks only accessible in five or fewer cell types, which are likely to be a mix of false
positives and highly cell type-specific peaks (Figure 2, left). The model does best on peaks that are
generally open across many cell types, which comprise a largest portion of the training data (Figure 
S9). This is clearly shown when looking at the overall precision-recall curves in the best (guard cell) and
worst (trichoblast) cell types, as well as a union of all cell types. There is not a substantial difference
between the three (Figure 2, right).
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Interpretation methods reveal important conserved and species-
specific motifs

Although chromatin state models that work across angiosperms are a useful tool, we may be able to
gain new insights into chromatin biology by dissecting what motifs and higher-order motif patterns
the model is learning to use to separate accessible from inaccessible chromatin or unmethylated from
methylated regions. We started with the attribution tool TF-MoDISco to identify important motifs in
the Z. mays and Arabidopsis thaliana test sets using their respective held-out models. While TF-
MoDISco qualitatively identified many important motifs (Figure S10), most of them ranked similarly by
attribution score and therefore could not be quantitatively compared in terms of effect size or
importance relative to each other.

Figure 3:  Multidimensional scaling of the high-effect medoid kmer distance matrix across all species and chromatin
feature model combinations. Each point is a high-effect kmer in a given species and chromatin feature combination.

To obtain better estimates of sequence effect size, we developed a method that masks sliding
windows across a set of sequences and evaluates the change in the model prediction, which we refer
to as the kmer occlusion method. Using a kmer size of 10bp, representing a common estimate of core
binding site length, we ran a kmer occlusion to get effect sizes for each kmer in the test set, binned
kmers into “high-effect” and “null-effect”, and then scanned them for matches to JASPAR 2020 CORE 
plantae [23] binding motifs. For our accessibility models, we see that about 20-40% of high-effect
kmers match with JASPAR motifs while our methylation models generally seem to have poor matching
between JASPAR motifs and high-effect kmers (Figure S12). To look at how similar the high-effect
kmers were between chromatin features and species, we used k-medoids to get a subset of
representative kmers and then visualized the distances between them using multidimensional scaling.
Surprisingly, the high-effect kmers across species and chromatin features cluster together, with slight
separation between methylation and accessibility (Figure 3, left). However, there is no separation
between species (Figure S11) nor monocots and dicots (Figure 3, middle/right) for either chromatin
feature.
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Figure 4:  Positional Global Importance Analysis plots for A. thaliana (left) and Z. mays (right) accessibility (top) and
methylation (bottom). The solid and dotted lines represent the importance scores for the positive and negative strand,
respectively. Only the top three JASPAR motifs ranked by the maximum global importance across the sequence were
plotted.

To understand which known biological motifs were being recognized as important to the model, we
used a recently-developed model interpretation method known as Global Importance Analysis (GIA) [2
4]. First, we ranked JASPAR motifs by their max global importance across all positions for each model
(Table 1) and see both species-specific and common TFs across the models. One of the most
remarkable observations is that the top 10 motifs in the A. thaliana model are all from the TCP family.
The Z. mays accessibility model also ranked TCP motifs in the top 10 but behind Dof-type motifs. The 
A. thaliana and Z. mays methylation models rank the same two motifs at the top and share mostly the
same families between the rest. Next, we looked at the positional effects of the top three TFs across A.
thaliana accessibility (Figure 4, top left) and methylation (bottom left) as well as Z. mays accessibility
(top right) and methylation (bottom right). The most striking feature is the sawtooth pattern seen
across both species and chromatin feature models, however the cause of this pattern is unclear. The 
A. thaliana accessibility model shows a clear bias towards the center of the accessible regions for the
top three TFs while the other models are not as consistent.

Table 1:  Top 10 JASPAR motifs for four pan-angiosperm models ranked by max global importance across all possible
embedding positions. TF family or class (if family was not available) according to JASPAR is shown in parentheses under
each TF. 

Rank Accessibility
A. thaliana

Accessibility
Z. mays

Methylation
A. thaliana

Methylation
Z. mays

1
TCP1
(TCP)

AT5G66940
(Dof-type)

ERF104
(AP2/ERF)

ERF104
(AP2/ERF)
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Rank Accessibility
A. thaliana

Accessibility
Z. mays

Methylation
A. thaliana

Methylation
Z. mays

2
TCP14
(TCP)

OBP3
(Dof-type)

AT4G18450
(AP2/ERF)

AT4G18450
(AP2/ERF)

3
At1g72010

(TCP)
AT1G69570
(Dof-type)

ERF9
(AP2/ERF)

RAP211
(AP2/ERF)

4
TCP21
(TCP)

OBP1
(Dof-type)

BPC5
(BBR-BPC)

BPC5
(BBR-BPC)

5
TCP19
(TCP)

AT2G28810
(Dof-type)

ERF2
(AP2/ERF)

ERF9
(AP2/ERF)

6
TCP7
(TCP)

AT5G02460
(Dof-type)

LEP
(AP2/ERF)

ESE1
(AP2/ERF)

7
At2g45680

(TCP)
TCP1
(TCP)

BPC1
(BBR-BPC)

AT5G66940
(Dof-type)

8
TCP20
(TCP)

At1g72010
(TCP)

ESE1
(AP2/ERF)

BPC1
(BBR-BPC)

9
OJ1581_H09.2

(TCP)
TCP21
(TCP)

ERF10
(AP2/ERF)

ERF2
(AP2/ERF)

10
TCP2
(TCP)

BPC5
(BBR-BPC)

BPC6
(BBR-BPC)

LEP
(AP2/ERF)

Discussion

We have shown that recurrent CNNs, DanQ in particular, are an effective architecture on which to
base cross-species sequence to chromatin state models. By incorporating sequence data from
multiple species we not only increase the size of our training data set, a critical factor for deep
learning models, but also reduce the amount of confounding neutral variation around functional
motifs. Being able to predict chromatin state across species also opens the door for studies of
regulatory regions in additional angiosperm species with only genomic sequence data. Beyond
angiosperms, the a2z model’s predictive ability in yeast suggests it is capable of working effectively
across wide evolutionary timescales. Unsurprisingly, we noticed that the performance across different
peak classes relates to their relative abundance in the training set. Future work looking at ways to
balance or weight observations in rarer peak classes would likely improve the generalizability of the
models. This is particularly important for working towards better cross-tissue chromatin state models,
where the tissue-specific peaks are usually the minority in any given data set, as well as with larger
genomes, where distal peaks are more prevalent.

Further, most sequence-based model architectures, including DanQ, only take in cis sequence, which
is known [25] to account for only a portion of the variation in local chromatin state. Model
architectures that can effectively incorporate trans factors, such as chromatin-remodeling TFs on
neighboring regulatory elements [26] or small RNA silencing [27], will likely surpass current methods
but their cross-species applicability remains an open question. By far the most prevalent error of the
accessibility models in particular is calling false-positives, which may be due to lack of trans
information. A portion of these false-positives may also be undercalled ATAC-Seq peaks that are open
in very specific cell-types, since the peaks from Lu et al. 2019 were called with relatively conservative
thresholds.
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Interpreting deep learning models remains a challenge, but is an especially critical one to overcome.
Here we use occlusion and perturbation-based methods instead of gradient-based approaches like
TF-MoDISco and saliency maps to trade longer computational times for reduced noise [28] in effect
estimates. Particularly since eukaryotic TF binding sites are known to be degenerate [29], SNP effect
sizes in regulatory sequences are likely to be small and harder to estimate accurately with our limited
data. The lack of separation between clades and species in the MDS plots for each chromatin feature
is not too surprising. The cross-species models must learn to prioritize motifs that are generalizable
across species and so potential species- or clade-specific motifs are ignored. The sawtooth pattern,
which is stronger in some TFs than in others, could be a manifestation of the model learning a helical
face bias for specific TF binding. Further controls will be necessary to investigate that hypothesis, as
the pattern may also be an artifact of the max pooling or LSTM layers. Not all of the pGIA results agree
with current theory. For example, some of the motifs have a noticeable strand bias, but enhancers are
known to operate in an orientation-independent [30] manner. Given some of them are relatively
simple motifs, it is possible that these matches are surrogates for important non-binding motifs. We
chose to rank JASPAR motifs by maximum global importance across the sequence as a rough estimate
for importance to regulating the given chromatin feature state, though other methods of ranking
could be preferrable depending on the use case. Since positive observations are created by extending
from the midpoint, the effect of TFs that bind to the center of accessible or unmethylation regions will
be easier to estimate because they are more aligned across the test set sequences. In contrast, TFs
that bind to the edges of accessible or unmethylation regions are not aligned since the lengths of the
true, unextended ATAC-Seq peaks are not equal.

The top 10 JASPAR motifs are very different between the features but remarkably similar between the
species within each feature. Of the two known [31,32,33] plant pioneer transcription factors (LEC1 and
LEAFY), only LEAFY is present in JASPAR, but does not show up in the top 10 motifs for any of the
models. This is not unexpected as it is a floral TF and our models are trained on leaf accessible
regions. The strong presence of the TCP family in the highly ranked accessibility TFs is promising, since
they are known [34] to be involved in chromatin remodeling. What role the Dof-type TFs play in
accessibility is still unclear due to the wide variety of roles they play [35]. The shared top two motifs
between the methylation models have evidence that they are involved in plant pathogen response 
[36,37]. Knowing that plant immunity genes are among the most variable [38], it would be interesting
to see if these unmethylated regions are harboring a large library of rapidly inducible resistance genes
that remain mostly inaccessible until needed. With the high similarity in binding motifs by definition
within families, it is quite possible that some highly ranked TFs are false positives due to association
with the few causal TFs in the same family. While it is useful to use JASPAR motifs as specific testable
hypotheses, there are only 530 motifs in the database and with the lowest estimates of angiosperm TF
gene count starting at about 1,500 [39], critical TFs may still be missing.

Moving forward, more focus is necessary on collecting high-quality accessible regions across a variety
of cell-types to train models that are capable of generalizing across tissues as well as species. With the
release of highly-accurate protein-folding models such as AlphaFold2 [40], the missing species-specific
TF binding motifs in any genome may finally be feasible to estimate using simulated DNA docking
approaches. Now that many deep learning-based approaches borrowed from other fields [12,41]
have been shown to be successful in mapping genomic sequence to a variety of cellular phenotypes,
better interpretation methods to assess what these black box models are learning will be important to
optimize towards more biologically-relevant architectures.
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Materials and Methods

Software environment

The software environment for the experiments was managed by conda (v4.10.3). Packages were
downloaded from the conda-forge [42] and bioconda [43] channels. Software versions not explicitly
mentioned in the methods are defined in the conda environment files in the companion code
repository on Zenodo.

Raw data

The angiosperm ATAC-seq peaks [13] were downloaded from NCBI GEO accession GSE128434.
Genomes and annotations for Arabidopsis thaliana (TAIR10) [44], Eutrema salsugineum (v1.0) [45], 
Phaseolus vulgaris (v1.0) [46], Glycine max (Wm82.a2.v1) [47], Brachypodium distachyon (v3.0) [48], Oryza
sativa (v7.0) [49], Setaria viridis (v1.0) [50], Populus trichocarpa (v3.0) [51], and Sorghum bicolor (v3.1 and
v3.1.1) [52] were downloaded from Phytozome. Reference genomes and annotations for Zea mays
(AGPv4.38) [53] and Hordeum vulgare (IBSC_v2) [54] were downloaded from Ensembl Plants. The
genome and annotation for Asparagus officinalis (v1.1) [55] was downloaded from the Asparagus
Genome Project website. Unmethylated regions (UMRs) for the grasses were downloaded from the
supplemental information of Crisp et al. 2020 [4]. For the unmethylated regions, the Z. mays AGPv4
genome and annotation was downloaded from MaizeGDB. The Vitis vinifera genome and annotation
(Genoscope.12X) [56] were downloaded from the Genoscope website.

JASPAR 2020 Core Plantae [23] motifs and clusters were downloaded from the JASPAR website. Maize
AGPv4 RepeatMasker annotations were downloaded from NCBI. Yeast and human cell-line GM12878
ATAC-seq peaks [22] were downloaded from NCBI GEO accession GSE66386. The yeast (sacCer3 April
2011) [57] and human (hg19) [58] genomes were downloaded from NCBI. Maize scATAC-seq peaks 
[21] were downloaded from NCBI GEO accession GSE155178. Genome files were indexed using
samtools [59].

UMR calling on non-grass species

UMR analysis on the non-grass species was performed as per Crisp et al. 2020. Briefly, sequencing
reads were trimmed and quality checked using Trim galore! (0.6.4_dev), powered by cutadapt (v1.18) 
[60] and fastqc (v0.11.4). For all libraries, 20bp were trimmed from the 5’ ends of both R1 and R2
reads and aligned with bsmap (v2.74) [61] to the respective genomes with the following parameters: -
v 5 to allow 5 mismatches, -r 0 to report only unique mapping pairs, and -p 1 and -q 20 to allow quality
trimming to Q20. Output SAM files were parsed with SAMtools [62] fixsam, sorted, and then indexed.
Picard MarkDuplicates [63] was used to remove duplicates, BamTools filter to remove improperly
paired reads, and bamUtil clipOverlap [64] to trim overlapping reads so as to only count cytosines
once per sequenced molecule in a pair for PE reads. The methylratio.py script from bsmap was used
to extract per-site methylation data summaries for each context (CH/CHG/CHH) and reads were
summarised into non-overlapping 100bp windows tiling the genome. WGBS pipelines are available on 
GitHub. To identify unmethylated regions, each 100bp tile of the genome was classified into one of six
domains or types: “missing data” (including “no data” and “no sites”), “High CHH/RdDM”,
“Heterochromatin”, “CG only”, “Unmethylated” or “intermediate”, in preferential order as per Crisp et
al. 2020 [4].

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://conda.io
https://doi.org/10.5281/zenodo.5676313
https://github.com/pezmaster31/bamtools
https://github.com/pedrocrisp/crisplab_epigenomics/tree/master/methylome
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


Training data preprocessing

Interval manipulation was done using a combination of the GNU coreutils, gawk, and bedtools [65].
We created our positive observations by symmetrically extending each accessible or unmethylated
region from the midpoint by half of the window size (300, 600, or 1000 bp). Our negative observations
are randomly sampled from the rest of the genome not covered by the union of the resized positive
observations and the original peaks. Observations were labeled as genic if more than half of the range
overlapped with a gene annotation, as proximal if not genic and more than half of the range was
within the proximal cutoff (2kb), and as distal if neither genic nor proximal. Previous work [20,66] has
shown that classifiers train best on balanced sets with an equal number of positive and negative
examples, but should be tested on the true class distribution to get an accurate performance
estimate. Therefore, for the across-species models, we randomly sampled 6% of the observations and
divided them equally between a validation and test set. For the within-species models we randomly
chose a hold-out chromosome to follow best practice for reducing contamination of related
sequences between the training and test sets. As a heuristic to select held-out chromosomes across
genome assemblies of varying contiguity, we randomly select within chromosomes that are at least a
million basepairs long and have more than five positive observations. We then downsampled the
remaining observations to obtain a training set for the across-species models with a balanced
representation of species and target class. Ns were encoded as vectors with equal probability
assigned to each base as opposed to all zeros, which is another common practice. Sequences were
extracted using BioPython [67] and pyfaidx [68]

Training and evaluating the DanQ architecture

The DanQ architecture was implemented using the keras [69] API of tensorflow [70]. The across-
species models were tested on a given species and trained on the remainder. Within-species models
were tested on a held-out chromosome and trained on the other chromosomes. Since our ratio of
accessible to inaccessible chromatin observations is heavily unbalanced, we focus more on the area
under the precision-recall curve (auPR) to measure model performance as opposed to the more
commonly-reported area under the receiver operating characteristic curve (auROC). Performance
metrics were measured using scikit-learn [71] and curves were plotted using matplotlib [72]. Each
model was trained three times to obtain an estimate of variability in performance due to the
stochastic nature of the model variable initialization. For comparison between models we used the
first of the three trained models.

The bag-of-kmers model was trained and tested independently on the within-species Z. mays
accessibility and methylation training data using code adapted from Tu et al. 2020 [12] and compared
to the within-species Z. mays accessibility and methylation models. For the two-step masked model
comparison we masked the Z. mays-held-out accessibility and methylation model predictions to zero if
more than half of a region overlapped with an annotated repeat from RepeatMasker. We used
pybedtools [73] to compute overlaps between the test set and the repeats. We preprocessed the
yeast and human cell-line ATAC-seq peaks in the same manner as the angiosperm ATAC-seq peaks
and used the Z. mays-held-out model to make predictions on the yeast and human peaks.

The grasses accessibility model was trained and evaluated in the same manner as the across-species
angiosperm accessibility model but restricted to only grass species. The “balDist” accessibility model
extended the training data balancing to distance class in addition to chromatin state, meaning the
training data had equal representation for each species, distance class (genic, proximal, distal), and
target class (accessibile/inaccessible or unmethylated/methylated). The “exp” accessibility model
changed the activation function on the convolutional layer from ReLU to exponential. The “all_v_AtZm”
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accessibility model was tested on A. thaliana and Z. mays and trained on the rest of the angiosperm
species.

The dendrogram in Figure 1 was plotted using the Phylo package of Biopython [74].

Analysis of maize scATAC-Seq data

scATAC-seq peaks were preprocessed in the same manner as the other peaks to generate uniform
600 bp regions. Peaks were classified as open in a cell-type if their CPM (counts per million, a
normalized depth measurement) value was greater than  in that cell-type, which would
represent no reads observed in that peak in that cell-type, based on the methods reported in Marand 
et al. 2021 [21]. Accessibility was predicted using the Z. mays-held-out model.

TF-MoDISco and kmer occlusion

We ran TF-MoDISco [75] with a sliding window size of 15bp, a flank size of 5bp, and a target seqlet FDR
of 0.15. For converting seqlets to patterns, we set “trim_to_window_size” to 15bp, “initial_flank_to_add”
to 5bp, and specified a final minimum cluster size of 60.

The kmer-occlusion method involves masking (replacing with N’s) a sliding kmer across each sequence
in a given model’s test set. The difference between the model’s masked and unmasked prediction is
the kmer’s “effect size”. We ran the kmer-occlusion method with a kmer size of 10bp on all species and
chromatin feature pairs. The top 5% accessibility- or methylation-reducing kmers per species and
chromatin feature were classified as “high-effect” kmers. We performed an all-by-all global alignment
of the high-effect kmers per species and chromatin feature using Biopython’s pairwise aligner [67].
Using the alignment distance matrix, we clustered these high-effect kmers into 100 representative
kmers using k-medoids [76]. We took the 100 medoid kmers for each species and chromatin feature
pair and did another all-by-all global alignment to create another distance matrix. The embedded
kmer coordinates were created using the MDS function in scikit-learn’s manifold package. High-effect
kmers were matched to JASPAR 2020 CORE plantae motifs using FIMO [77] and a q-value threshold of
0.05.

Positional Global Importance Analysis

Global importance analysis (GIA) [24] measures the average difference in model predictions from a
sampled background set of sequences to the same set with the sequence embedded within them. We
ran a positional GIA (pGIA) analysis for each species and chromatin feature pair by embedding the
consensus motifs of the 530 JASPAR 2020 CORE plantae TFs in both orientations at each possible
position within 1,000 generated 600bp sequences. The 600bp sequences were generated using a
profile model, where bases were sampled at each position according to their relative frequency in the
model’s test set at that position. GNU parallel [78] was used to speed up the pGIA analysis.

JASPAR motifs were ranked by their maximum global importance across all positions. TF families and
classes were obtained from the JASPAR API (v1).

Manuscript

This manuscript was formatted with Manubot [79].

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


Acknowledgements

This work was funded by an NSF Graduate Research Fellowship (DGE-1650441) and the USDA-ARS to
T.W., an NSF Postdoctoral Fellowship in Biology (DBI-1905869) to A.P.M., an Australian Research
Council (ARC) Discovery Early Career Award (DE200101748) to P.A.C., the NSF IOS-1934384 to N.M.S.,
and the USDA-ARS to E.S.B. The Texas Advanced Computing Center supported a portion of the
compute time for the analyses with their Frontera system. Peter Koo contributed helpful comments
during the analysis.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

References

Towards genome-wide prediction and characterization of enhancers in plants 
Alexandre P Marand, Tao Zhang, Bo Zhu, Jiming Jiang
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms (2017-01) https://doi.org/
gkzgb9 
DOI: 10.1016/j.bbagrm.2016.06.006 · PMID: 27321818

Plant Enhancers: A Call for Discovery 
Blaise Weber, Johan Zicola, Rurika Oka, Maike Stam
Trends in Plant Science (2016-11) https://doi.org/ggzsjj 
DOI: 10.1016/j.tplants.2016.07.013 · PMID: 27593567

Transposable element influences on gene expression in plants
Cory D Hirsch, Nathan M Springer
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms (2017-01) https://doi.org/gd8kfs 
DOI: 10.1016/j.bbagrm.2016.05.010 · PMID: 27235540

Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in
plant genomes 
Peter A Crisp, Alexandre P Marand, Jaclyn M Noshay, Peng Zhou, Zefu Lu, Robert J Schmitz,
Nathan M Springer
Proceedings of the National Academy of Sciences (2020-09-22) https://doi.org/gmvz6r 
DOI: 10.1073/pnas.2010250117 · PMID: 32879011 · PMCID: PMC7519222

Evolutionary genetics of plant adaptation 
Jill T Anderson, John H Willis, Thomas Mitchell-Olds
Trends in Genetics (2011-07) https://doi.org/b7vnjs 
DOI: 10.1016/j.tig.2011.04.001 · PMID: 21550682 · PMCID: PMC3123387

Evolutionarily informed deep learning methods for predicting relative transcript
abundance from DNA sequence 
Jacob D Washburn, Maria Katherine Mejia-Guerra, Guillaume Ramstein, Karl A Kremling, Ravi
Valluru, Edward S Buckler, Hai Wang
Proceedings of the National Academy of Sciences (2019-03-19) https://doi.org/ggzr4h 
DOI: 10.1073/pnas.1814551116 · PMID: 30842277 · PMCID: PMC6431157

Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional
Neural Networks 
Vikram Agarwal, Jay Shendure
Cell Reports (2020-05) https://doi.org/ggw7fr 
DOI: 10.1016/j.celrep.2020.107663 · PMID: 32433972

Effective gene expression prediction from sequence by integrating long-range
interactions 
Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, David R Kelley
Cold Spring Harbor Laboratory (2021-04-08) https://doi.org/gjpx5v 
DOI: 10.1101/2021.04.07.438649

Predicting effects of noncoding variants with deep learning–based sequence model 
Jian Zhou, Olga G Troyanskaya

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/gkzgb9
https://doi.org/gkzgb9
https://doi.org/10.1016/j.bbagrm.2016.06.006
https://www.ncbi.nlm.nih.gov/pubmed/27321818
https://doi.org/ggzsjj
https://doi.org/10.1016/j.tplants.2016.07.013
https://www.ncbi.nlm.nih.gov/pubmed/27593567
https://doi.org/gd8kfs
https://doi.org/10.1016/j.bbagrm.2016.05.010
https://www.ncbi.nlm.nih.gov/pubmed/27235540
https://doi.org/gmvz6r
https://doi.org/10.1073/pnas.2010250117
https://www.ncbi.nlm.nih.gov/pubmed/32879011
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519222
https://doi.org/b7vnjs
https://doi.org/10.1016/j.tig.2011.04.001
https://www.ncbi.nlm.nih.gov/pubmed/21550682
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123387
https://doi.org/ggzr4h
https://doi.org/10.1073/pnas.1814551116
https://www.ncbi.nlm.nih.gov/pubmed/30842277
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431157
https://doi.org/ggw7fr
https://doi.org/10.1016/j.celrep.2020.107663
https://www.ncbi.nlm.nih.gov/pubmed/32433972
https://doi.org/gjpx5v
https://doi.org/10.1101/2021.04.07.438649
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

Nature Methods (2015-08-24) https://doi.org/gcgk8g 
DOI: 10.1038/nmeth.3547 · PMID: 26301843 · PMCID: PMC4768299

DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the
function of DNA sequences 
Daniel Quang, Xiaohui Xie
Nucleic Acids Research (2016-06-20) https://doi.org/f8v4wj 
DOI: 10.1093/nar/gkw226 · PMID: 27084946 · PMCID: PMC4914104

Cross-species regulatory sequence activity prediction 
David R Kelley
PLOS Computational Biology (2020-07-20) https://doi.org/gg645k 
DOI: 10.1371/journal.pcbi.1008050 · PMID: 32687525 · PMCID: PMC7392335

Reconstructing the maize leaf regulatory network using ChIP-seq data of 104
transcription factors 
Xiaoyu Tu, María Katherine Mejía-Guerra, Jose A Valdes Franco, David Tzeng, Po-Yu Chu, Wei
Shen, Yingying Wei, Xiuru Dai, Pinghua Li, Edward S Buckler, Silin Zhong
Nature Communications (2020-10-09) https://doi.org/gh33cj 
DOI: 10.1038/s41467-020-18832-8 · PMID: 33037196 · PMCID: PMC7547689

The prevalence, evolution and chromatin signatures of plant regulatory elements 
Zefu Lu, Alexandre P Marand, William A Ricci, Christina L Ethridge, Xiaoyu Zhang, Robert J
Schmitz
Nature Plants (2019-11-18) https://doi.org/ggd822 
DOI: 10.1038/s41477-019-0548-z · PMID: 31740772

LEAFY, a Pioneer Transcription Factor in Plants: A Mini-Review 
Nobutoshi Yamaguchi
Frontiers in Plant Science (2021-07-05) https://doi.org/gmdgvv 
DOI: 10.3389/fpls.2021.701406 · PMID: 34290727 · PMCID: PMC8287900

Three-dimensional chromatin packing and positioning of plant genomes 
Ezgi Süheyla Doğan, Chang Liu
Nature Plants (2018-07-30) https://doi.org/gd9ndt 
DOI: 10.1038/s41477-018-0199-5 · PMID: 30061747

The transcription regulatory code of a plant leaf 
Xiaoyu Tu, María Katherine Mejía-Guerra, Jose AValdes Franco, David Tzeng, Po-Yu Chu, Xiuru
Dai, Pinghua Li, Edward S Buckler, Silin Zhong
Cold Spring Harbor Laboratory (2020-04-22) https://doi.org/ggwrtw 
DOI: 10.1101/2020.01.07.898056

Prediction of gene regulatory enhancers across species reveals evolutionarily conserved
sequence properties 
Ling Chen, Alexandra E Fish, John A Capra
PLOS Computational Biology (2018-10-04) https://doi.org/gfdkd4 
DOI: 10.1371/journal.pcbi.1006484 · PMID: 30286077 · PMCID: PMC6191148

Transcriptional enhancers: from properties to genome-wide predictions 
Daria Shlyueva, Gerald Stampfel, Alexander Stark
Nature Reviews Genetics (2014-03-11) https://doi.org/f3swzg 
DOI: 10.1038/nrg3682 · PMID: 24614317

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/gcgk8g
https://doi.org/10.1038/nmeth.3547
https://www.ncbi.nlm.nih.gov/pubmed/26301843
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768299
https://doi.org/f8v4wj
https://doi.org/10.1093/nar/gkw226
https://www.ncbi.nlm.nih.gov/pubmed/27084946
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914104
https://doi.org/gg645k
https://doi.org/10.1371/journal.pcbi.1008050
https://www.ncbi.nlm.nih.gov/pubmed/32687525
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392335
https://doi.org/gh33cj
https://doi.org/10.1038/s41467-020-18832-8
https://www.ncbi.nlm.nih.gov/pubmed/33037196
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547689
https://doi.org/ggd822
https://doi.org/10.1038/s41477-019-0548-z
https://www.ncbi.nlm.nih.gov/pubmed/31740772
https://doi.org/gmdgvv
https://doi.org/10.3389/fpls.2021.701406
https://www.ncbi.nlm.nih.gov/pubmed/34290727
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287900
https://doi.org/gd9ndt
https://doi.org/10.1038/s41477-018-0199-5
https://www.ncbi.nlm.nih.gov/pubmed/30061747
https://doi.org/ggwrtw
https://doi.org/10.1101/2020.01.07.898056
https://doi.org/gfdkd4
https://doi.org/10.1371/journal.pcbi.1006484
https://www.ncbi.nlm.nih.gov/pubmed/30286077
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191148
https://doi.org/f3swzg
https://doi.org/10.1038/nrg3682
https://www.ncbi.nlm.nih.gov/pubmed/24614317
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

Base-resolution models of transcription-factor binding reveal soft motif syntax 
Žiga Avsec, Melanie Weilert, Avanti Shrikumar, Sabrina Krueger, Amr Alexandari, Khyati Dalal,
Robin Fropf, Charles McAnany, Julien Gagneur, Anshul Kundaje, Julia Zeitlinger
Nature Genetics (2021-02-18) https://doi.org/gh4tbk 
DOI: 10.1038/s41588-021-00782-6 · PMID: 33603233

The impact of different negative training data on regulatory sequence predictions
Louisa-Marie Krützfeldt, Max Schubach, Martin Kircher
Cold Spring Harbor Laboratory (2020-07-28) https://doi.org/gg7ww5 
DOI: 10.1101/2020.07.28.224485

A cis-regulatory atlas in maize at single-cell resolution 
Alexandre P Marand, Zongliang Chen, Andrea Gallavotti, Robert J Schmitz
Cell (2021-05) https://doi.org/gjwwb4 
DOI: 10.1016/j.cell.2021.04.014 · PMID: 33964211

Structured nucleosome fingerprints enable high-resolution mapping of chromatin
architecture within regulatory regions 
Alicia N Schep, Jason D Buenrostro, Sarah K Denny, Katja Schwartz, Gavin Sherlock, William J
Greenleaf
Genome Research (2015-11) https://doi.org/f7xzhg 
DOI: 10.1101/gr.192294.115 · PMID: 26314830 · PMCID: PMC4617971

JASPAR 2020: update of the open-access database of transcription factor binding profiles 
Oriol Fornes, Jaime A Castro-Mondragon, Aziz Khan, Robin van der Lee, Xi Zhang, Phillip A
Richmond, Bhavi P Modi, Solenne Correard, Marius Gheorghe, Damir Baranašić, … Anthony
Mathelier
Nucleic Acids Research (2019-11-08) https://doi.org/ggrsnn 
DOI: 10.1093/nar/gkz1001 · PMID: 31701148 · PMCID: PMC7145627

Global importance analysis: An interpretability method to quantify importance of
genomic features in deep neural networks 
Peter K Koo, Antonio Majdandzic, Matthew Ploenzke, Praveen Anand, Steffan B Paul
PLOS Computational Biology (2021-05-13) https://doi.org/gksp3k 
DOI: 10.1371/journal.pcbi.1008925 · PMID: 33983921 · PMCID: PMC8118286

Polycomb repression in the regulation of growth and development in Arabidopsis 
Jun Xiao, Doris Wagner
Current Opinion in Plant Biology (2015-02) https://doi.org/f63kzz 
DOI: 10.1016/j.pbi.2014.10.003 · PMID: 25449722

Polycomb-Repressed Genes Have Permissive Enhancers that Initiate Reprogramming 
Phillippa C Taberlay, Theresa K Kelly, Chun-Chi Liu, Jueng Soo You, Daniel D De Carvalho, Tina B
Miranda, Xianghong J Zhou, Gangning Liang, Peter A Jones
Cell (2011-12) https://doi.org/bw7b3j 
DOI: 10.1016/j.cell.2011.10.040 · PMID: 22153073 · PMCID: PMC3240866

Small RNAs and transposon silencing in plants 
Hidetaka Ito
Development, Growth & Differentiation (2012-01) https://doi.org/cd64vd 
DOI: 10.1111/j.1440-169x.2011.01309.x · PMID: 22150226

Why are Saliency Maps Noisy? Cause of and Solution to Noisy Saliency Maps 
Beomsu Kim, Junghoon Seo, Seunghyeon Jeon, Jamyoung Koo, Jeongyeol Choe, Taegyun Jeon

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/gh4tbk
https://doi.org/10.1038/s41588-021-00782-6
https://www.ncbi.nlm.nih.gov/pubmed/33603233
https://doi.org/gg7ww5
https://doi.org/10.1101/2020.07.28.224485
https://doi.org/gjwwb4
https://doi.org/10.1016/j.cell.2021.04.014
https://www.ncbi.nlm.nih.gov/pubmed/33964211
https://doi.org/f7xzhg
https://doi.org/10.1101/gr.192294.115
https://www.ncbi.nlm.nih.gov/pubmed/26314830
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4617971
https://doi.org/ggrsnn
https://doi.org/10.1093/nar/gkz1001
https://www.ncbi.nlm.nih.gov/pubmed/31701148
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145627
https://doi.org/gksp3k
https://doi.org/10.1371/journal.pcbi.1008925
https://www.ncbi.nlm.nih.gov/pubmed/33983921
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118286
https://doi.org/f63kzz
https://doi.org/10.1016/j.pbi.2014.10.003
https://www.ncbi.nlm.nih.gov/pubmed/25449722
https://doi.org/bw7b3j
https://doi.org/10.1016/j.cell.2011.10.040
https://www.ncbi.nlm.nih.gov/pubmed/22153073
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240866
https://doi.org/cd64vd
https://doi.org/10.1111/j.1440-169x.2011.01309.x
https://www.ncbi.nlm.nih.gov/pubmed/22150226
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

Institute of Electrical and Electronics Engineers (IEEE) (2019-10) https://doi.org/gm3w6h 
DOI: 10.1109/iccvw.2019.00510

Why Transcription Factor Binding Sites Are Ten Nucleotides Long 
Alexander J Stewart, Sridhar Hannenhalli, Joshua B Plotkin
Genetics (2012-11-01) https://doi.org/f4d632 
DOI: 10.1534/genetics.112.143370 · PMID: 22887818 · PMCID: PMC3522170

Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq 
CD Arnold, D Gerlach, C Stelzer, LM Boryn, M Rath, A Stark
Science (2013-01-17) https://doi.org/f3sn33 
DOI: 10.1126/science.1232542 · PMID: 23328393

Embryonic epigenetic reprogramming by a pioneer transcription factor in plants 
Zeng Tao, Lisha Shen, Xiaofeng Gu, Yizhong Wang, Hao Yu, Yuehui He
Nature (2017-10-25) https://doi.org/gcf5hp 
DOI: 10.1038/nature24300 · PMID: 29072296

LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate 
Run Jin, Samantha Klasfeld, Yang Zhu, Meilin Fernandez Garcia, Jun Xiao, Soon-Ki Han, Adam
Konkol, Doris Wagner
Nature Communications (2021-01-27) https://doi.org/gmdgvt 
DOI: 10.1038/s41467-020-20883-w · PMID: 33504790 · PMCID: PMC7840934

The LEAFY floral regulator displays pioneer transcription factor properties 
Xuelei Lai, Romain Blanc-Mathieu, Loïc GrandVuillemin, Ying Huang, Arnaud Stigliani, Jérémy
Lucas, Emmanuel Thévenon, Jeanne Loue-Manifel, Laura Turchi, Hussein Daher, … François
Parcy
Molecular Plant (2021-05) https://doi.org/gmdgvs 
DOI: 10.1016/j.molp.2021.03.004 · PMID: 33684542

Regulation of plant architecture by a new histone acetyltransferase targeting gene
bodies 
Xueyong Yang, Jianbin Yan, Zhen Zhang, Tao Lin, Tongxu Xin, Bowen Wang, Shenhao Wang,
Jicheng Zhao, Zhonghua Zhang, William J Lucas, … Sanwen Huang
Nature Plants (2020-07-13) https://doi.org/gm52f8 
DOI: 10.1038/s41477-020-0715-2 · PMID: 32665652

The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants 
Mélanie Noguero, Rana Muhammad Atif, Sergio Ochatt, Richard D Thompson
Plant Science (2013-08) https://doi.org/f437jw 
DOI: 10.1016/j.plantsci.2013.03.016 · PMID: 23759101

Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6
in Arabidopsis thaliana via ethylene signaling
G Bethke, T Unthan, JF Uhrig, Y Poschl, AA Gust, D Scheel, J Lee
Proceedings of the National Academy of Sciences (2009-04-29) https://doi.org/b3n92d 
DOI: 10.1073/pnas.0810206106 · PMID: 19416906 · PMCID: PMC2683104

A High-Throughput Screening System for Arabidopsis Transcription Factors and Its
Application to Med25-Dependent Transcriptional Regulation 
Bin Ou, Kang-Quan Yin, Sai-Nan Liu, Yan Yang, Tren Gu, Jennifer Man Wing Hui, Li Zhang, Jin
Miao, Youichi Kondou, Minami Matsui, … Li-Jia Qu
Molecular Plant (2011-05) https://doi.org/cm8w9q 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/gm3w6h
https://doi.org/10.1109/iccvw.2019.00510
https://doi.org/f4d632
https://doi.org/10.1534/genetics.112.143370
https://www.ncbi.nlm.nih.gov/pubmed/22887818
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522170
https://doi.org/f3sn33
https://doi.org/10.1126/science.1232542
https://www.ncbi.nlm.nih.gov/pubmed/23328393
https://doi.org/gcf5hp
https://doi.org/10.1038/nature24300
https://www.ncbi.nlm.nih.gov/pubmed/29072296
https://doi.org/gmdgvt
https://doi.org/10.1038/s41467-020-20883-w
https://www.ncbi.nlm.nih.gov/pubmed/33504790
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840934
https://doi.org/gmdgvs
https://doi.org/10.1016/j.molp.2021.03.004
https://www.ncbi.nlm.nih.gov/pubmed/33684542
https://doi.org/gm52f8
https://doi.org/10.1038/s41477-020-0715-2
https://www.ncbi.nlm.nih.gov/pubmed/32665652
https://doi.org/f437jw
https://doi.org/10.1016/j.plantsci.2013.03.016
https://www.ncbi.nlm.nih.gov/pubmed/23759101
https://doi.org/b3n92d
https://doi.org/10.1073/pnas.0810206106
https://www.ncbi.nlm.nih.gov/pubmed/19416906
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683104
https://doi.org/cm8w9q
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

DOI: 10.1093/mp/ssr002 · PMID: 21343311

A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana 
Anna-Lena Van de Weyer, Freddy Monteiro, Oliver J Furzer, Marc T Nishimura, Volkan Cevik,
Kamil Witek, Jonathan DG Jones, Jeffery L Dangl, Detlef Weigel, Felix Bemm
Cell (2019-08) https://doi.org/ggfvc6 
DOI: 10.1016/j.cell.2019.07.038 · PMID: 31442410 · PMCID: PMC6709784

Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A
Timeline of Loss, Gain, Expansion, and Correlation with Complexity 
Daniel Lang, Benjamin Weiche, Gerrit Timmerhaus, Sandra Richardt, Diego M Riaño-Pachón,
Luiz GG Corrêa, Ralf Reski, Bernd Mueller-Roeber, Stefan A Rensing
Genome Biology and Evolution (2010) https://doi.org/fs6km4 
DOI: 10.1093/gbe/evq032 · PMID: 20644220 · PMCID: PMC2997552

Highly accurate protein structure prediction with AlphaFold 
John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, … Demis Hassabis
Nature (2021-07-15) https://doi.org/gk7nfp 
DOI: 10.1038/s41586-021-03819-2 · PMID: 34265844 · PMCID: PMC8371605

Effective gene expression prediction from sequence by integrating long-range
interactions 
Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska,
Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, David R Kelley
Nature Methods (2021-10-04) https://doi.org/gm2wv4 
DOI: 10.1038/s41592-021-01252-x · PMID: 34608324 · PMCID: PMC8490152

The conda-forge Project: Community-based Software Distribution Built on the conda
Package Format and Ecosystem 
Conda-Forge Community
Zenodo (2015-07-12) https://doi.org/gmzdsn 
DOI: 10.5281/zenodo.4774216

Bioconda: sustainable and comprehensive software distribution for the life sciences 
Björn Grüning, Ryan Dale, Andreas Sjödin, Brad A Chapman, Jillian Rowe, Christopher H
Tomkins-Tinch, Renan Valieris, Johannes Köster, The Bioconda Team
Nature Methods (2018-07-02) https://doi.org/gd2xzp 
DOI: 10.1038/s41592-018-0046-7 · PMID: 29967506

The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools 
Philippe Lamesch, Tanya Z Berardini, Donghui Li, David Swarbreck, Christopher Wilks, Rajkumar
Sasidharan, Robert Muller, Kate Dreher, Debbie L Alexander, Margarita Garcia-Hernandez, …
Eva Huala
Nucleic Acids Research (2012-01) https://doi.org/cc3nr3 
DOI: 10.1093/nar/gkr1090 · PMID: 22140109 · PMCID: PMC3245047

The Reference Genome of the Halophytic Plant Eutrema salsugineum 
Ruolin Yang, David E Jarvis, Hao Chen, Mark A Beilstein, Jane Grimwood, Jerry Jenkins,
ShengQiang Shu, Simon Prochnik, Mingming Xin, Chuang Ma, … Xiangfeng Wang
Frontiers in Plant Science (2013) https://doi.org/gkzg3t 
DOI: 10.3389/fpls.2013.00046 · PMID: 23518688 · PMCID: PMC3604812

A reference genome for common bean and genome-wide analysis of dual domestications 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/10.1093/mp/ssr002
https://www.ncbi.nlm.nih.gov/pubmed/21343311
https://doi.org/ggfvc6
https://doi.org/10.1016/j.cell.2019.07.038
https://www.ncbi.nlm.nih.gov/pubmed/31442410
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709784
https://doi.org/fs6km4
https://doi.org/10.1093/gbe/evq032
https://www.ncbi.nlm.nih.gov/pubmed/20644220
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997552
https://doi.org/gk7nfp
https://doi.org/10.1038/s41586-021-03819-2
https://www.ncbi.nlm.nih.gov/pubmed/34265844
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371605
https://doi.org/gm2wv4
https://doi.org/10.1038/s41592-021-01252-x
https://www.ncbi.nlm.nih.gov/pubmed/34608324
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490152
https://doi.org/gmzdsn
https://doi.org/10.5281/zenodo.4774216
https://doi.org/gd2xzp
https://doi.org/10.1038/s41592-018-0046-7
https://www.ncbi.nlm.nih.gov/pubmed/29967506
https://doi.org/cc3nr3
https://doi.org/10.1093/nar/gkr1090
https://www.ncbi.nlm.nih.gov/pubmed/22140109
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245047
https://doi.org/gkzg3t
https://doi.org/10.3389/fpls.2013.00046
https://www.ncbi.nlm.nih.gov/pubmed/23518688
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604812
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

Jeremy Schmutz, Phillip E McClean, Sujan Mamidi, GAlbert Wu, Steven B Cannon, Jane
Grimwood, Jerry Jenkins, Shengqiang Shu, Qijian Song, Carolina Chavarro, … Scott A Jackson
Nature Genetics (2014-06-08) https://doi.org/f57qhm 
DOI: 10.1038/ng.3008 · PMID: 24908249 · PMCID: PMC7048698

Genome sequence of the palaeopolyploid soybean 
Jeremy Schmutz, Steven B Cannon, Jessica Schlueter, Jianxin Ma, Therese Mitros, William
Nelson, David L Hyten, Qijian Song, Jay J Thelen, Jianlin Cheng, … Scott A Jackson
Nature (2010-01) https://doi.org/cf4xb5 
DOI: 10.1038/nature08670 · PMID: 20075913

Genome sequencing and analysis of the model grass Brachypodium distachyon 
The International Brachypodium Initiative
Nature (2010-02) https://doi.org/d6n7pw 
DOI: 10.1038/nature08747 · PMID: 20148030

The TIGR Rice Genome Annotation Resource: improvements and new features 
S Ouyang, W Zhu, J Hamilton, H Lin, M Campbell, K Childs, F Thibaud-Nissen, RL Malek, Y Lee, L
Zheng, … CR Buell
Nucleic Acids Research (2007-01-03) https://doi.org/cwnws4 
DOI: 10.1093/nar/gkl976 · PMID: 17145706 · PMCID: PMC1751532

A genome resource for green millet Setaria viridis enables discovery of agronomically
valuable loci 
Sujan Mamidi, Adam Healey, Pu Huang, Jane Grimwood, Jerry Jenkins, Kerrie Barry, Avinash
Sreedasyam, Shengqiang Shu, John T Lovell, Maximilian Feldman, … Elizabeth A Kellogg
Nature Biotechnology (2020-10-05) https://doi.org/gjzqtb 
DOI: 10.1038/s41587-020-0681-2 · PMID: 33020633 · PMCID: PMC7536120

The Genome of Black Cottonwood, Populus trichocarpa (Torr. &amp; Gray) 
GA Tuskan, S DiFazio, S Jansson, J Bohlmann, I Grigoriev, U Hellsten, N Putnam, S Ralph, S
Rombauts, A Salamov, … D Rokhsar
Science (2006-09-15) https://doi.org/c7hs34 
DOI: 10.1126/science.1128691 · PMID: 16973872

The <i>Sorghum bicolor</i> reference genome: improved assembly, gene annotations, a
transcriptome atlas, and signatures of genome organization 
Ryan F McCormick, Sandra K Truong, Avinash Sreedasyam, Jerry Jenkins, Shengqiang Shu, David
Sims, Megan Kennedy, Mojgan Amirebrahimi, Brock D Weers, Brian McKinley, … John E Mullet
The Plant Journal (2017-12-28) https://doi.org/gmz6s3 
DOI: 10.1111/tpj.13781 · PMID: 29161754

Improved maize reference genome with single-molecule technologies 
Yinping Jiao, Paul Peluso, Jinghua Shi, Tiffany Liang, Michelle C Stitzer, Bo Wang, Michael S
Campbell, Joshua C Stein, Xuehong Wei, Chen-Shan Chin, … Doreen Ware
Nature (2017-06-12) https://doi.org/gbhcq6 
DOI: 10.1038/nature22971 · PMID: 28605751 · PMCID: PMC7052699

A chromosome conformation capture ordered sequence of the barley genome 
Martin Mascher, Heidrun Gundlach, Axel Himmelbach, Sebastian Beier, Sven O Twardziok,
Thomas Wicker, Volodymyr Radchuk, Christoph Dockter, Pete E Hedley, Joanne Russell, … Nils
Stein
Nature (2017-04-26) https://doi.org/f95vb9 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/f57qhm
https://doi.org/10.1038/ng.3008
https://www.ncbi.nlm.nih.gov/pubmed/24908249
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048698
https://doi.org/cf4xb5
https://doi.org/10.1038/nature08670
https://www.ncbi.nlm.nih.gov/pubmed/20075913
https://doi.org/d6n7pw
https://doi.org/10.1038/nature08747
https://www.ncbi.nlm.nih.gov/pubmed/20148030
https://doi.org/cwnws4
https://doi.org/10.1093/nar/gkl976
https://www.ncbi.nlm.nih.gov/pubmed/17145706
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751532
https://doi.org/gjzqtb
https://doi.org/10.1038/s41587-020-0681-2
https://www.ncbi.nlm.nih.gov/pubmed/33020633
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536120
https://doi.org/c7hs34
https://doi.org/10.1126/science.1128691
https://www.ncbi.nlm.nih.gov/pubmed/16973872
https://doi.org/gmz6s3
https://doi.org/10.1111/tpj.13781
https://www.ncbi.nlm.nih.gov/pubmed/29161754
https://doi.org/gbhcq6
https://doi.org/10.1038/nature22971
https://www.ncbi.nlm.nih.gov/pubmed/28605751
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052699
https://doi.org/f95vb9
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

DOI: 10.1038/nature22043 · PMID: 28447635

The asparagus genome sheds light on the origin and evolution of a young Y chromosome 
Alex Harkess, Jinsong Zhou, Chunyan Xu, John E Bowers, Ron Van der Hulst, Saravanaraj
Ayyampalayam, Francesco Mercati, Paolo Riccardi, Michael R McKain, Atul Kakrana, … Guangyu
Chen
Nature Communications (2017-11-02) https://doi.org/gcjdtf 
DOI: 10.1038/s41467-017-01064-8 · PMID: 29093472 · PMCID: PMC5665984

The grapevine genome sequence suggests ancestral hexaploidization in major
angiosperm phyla 
The French–Italian Public Consortium for Grapevine Genome Characterization
Nature (2007-08-26) https://doi.org/ckfnh2 
DOI: 10.1038/nature06148 · PMID: 17721507

Erratum: Overview of the yeast genome 
HW Mewes, K Albermann, M Bähr, D Frishman, A Gleissner, J Hani, K Heumann, K Kleine, A
Maierl, SG Oliver, … A Zollner
Nature (1997-06-12) https://doi.org/cwhbkg 
DOI: 10.1038/42755 · PMID: 9169865

Modernizing Reference Genome Assemblies 
Deanna M Church, Valerie A Schneider, Tina Graves, Katherine Auger, Fiona Cunningham,
Nathan Bouk, Hsiu-Chuan Chen, Richa Agarwala, William M McLaren, Graham RS Ritchie, … Tim
Hubbard
PLoS Biology (2011-07-05) https://doi.org/djgd3t 
DOI: 10.1371/journal.pbio.1001091 · PMID: 21750661 · PMCID: PMC3130012

Twelve years of SAMtools and BCFtools 
Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard,
Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, Heng Li
GigaScience (2021-02-16) https://doi.org/gjxzc9 
DOI: 10.1093/gigascience/giab008 · PMID: 33590861 · PMCID: PMC7931819

Cutadapt removes adapter sequences from high-throughput sequencing reads 
Marcel Martin
EMBnet.journal (2011-05-02) https://doi.org/gdh7xt 
DOI: 10.14806/ej.17.1.200

BSMAP: whole genome bisulfite sequence MAPping program 
Yuanxin Xi, Wei Li
BMC Bioinformatics (2009-07-27) https://doi.org/cbrc35 
DOI: 10.1186/1471-2105-10-232 · PMID: 19635165 · PMCID: PMC2724425

The Sequence Alignment/Map format and SAMtools 
H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin, 1000
Genome Project Data Processing Subgroup
Bioinformatics (2009-06-08) https://doi.org/ff6426 
DOI: 10.1093/bioinformatics/btp352 · PMID: 19505943 · PMCID: PMC2723002

Picard toolkit 
GitHub
Broad Institute (2019) https://github.com/broadinstitute/picard

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/10.1038/nature22043
https://www.ncbi.nlm.nih.gov/pubmed/28447635
https://doi.org/gcjdtf
https://doi.org/10.1038/s41467-017-01064-8
https://www.ncbi.nlm.nih.gov/pubmed/29093472
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665984
https://doi.org/ckfnh2
https://doi.org/10.1038/nature06148
https://www.ncbi.nlm.nih.gov/pubmed/17721507
https://doi.org/cwhbkg
https://doi.org/10.1038/42755
https://www.ncbi.nlm.nih.gov/pubmed/9169865
https://doi.org/djgd3t
https://doi.org/10.1371/journal.pbio.1001091
https://www.ncbi.nlm.nih.gov/pubmed/21750661
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130012
https://doi.org/gjxzc9
https://doi.org/10.1093/gigascience/giab008
https://www.ncbi.nlm.nih.gov/pubmed/33590861
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7931819
https://doi.org/gdh7xt
https://doi.org/10.14806/ej.17.1.200
https://doi.org/cbrc35
https://doi.org/10.1186/1471-2105-10-232
https://www.ncbi.nlm.nih.gov/pubmed/19635165
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724425
https://doi.org/ff6426
https://doi.org/10.1093/bioinformatics/btp352
https://www.ncbi.nlm.nih.gov/pubmed/19505943
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002
https://github.com/broadinstitute/picard
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

An efficient and scalable analysis framework for variant extraction and refinement from
population-scale DNA sequence data 
Goo Jun, Mary Kate Wing, Gonçalo R Abecasis, Hyun Min Kang
Genome Research (2015-06) https://doi.org/f7dz2d 
DOI: 10.1101/gr.176552.114 · PMID: 25883319 · PMCID: PMC4448687

BEDTools: a flexible suite of utilities for comparing genomic features 
Aaron R Quinlan, Ira M Hall
Bioinformatics (2010-03-15) https://doi.org/cmrms3 
DOI: 10.1093/bioinformatics/btq033 · PMID: 20110278 · PMCID: PMC2832824

The Role of Balanced Training and Testing Data Sets for Binary Classifiers in
Bioinformatics 
Qiong Wei, Roland L Dunbrack
PLoS ONE (2013-07-09) https://doi.org/f5bpzf 
DOI: 10.1371/journal.pone.0067863 · PMID: 23874456 · PMCID: PMC3706434

Biopython: freely available Python tools for computational molecular biology and
bioinformatics 
PJA Cock, T Antao, JT Chang, BA Chapman, CJ Cox, A Dalke, I Friedberg, T Hamelryck, F Kauff, B
Wilczynski, MJL de Hoon
Bioinformatics (2009-03-20) https://doi.org/d7zwd2 
DOI: 10.1093/bioinformatics/btp163 · PMID: 19304878 · PMCID: PMC2682512

Efficient "pythonic" access to FASTA files using pyfaidx 
Matthew D Shirley, Zhaorong Ma, Brent S Pedersen, Sarah J Wheelan
PeerJ (2018-01-12) https://doi.org/gfzprs 
DOI: 10.7287/peerj.preprints.970v1

Keras: the Python deep learning API https://keras.io/

TensorFlow 
TensorFlow Developers
Zenodo (2021-08-12) https://doi.org/gm2ghn 
DOI: 10.5281/zenodo.4724125

Scikit-learn: Machine Learning in Python 
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, … Édouard
Duchesnay
Journal of Machine Learning Research (2011) https://jmlr.csail.mit.edu/papers/v12/
pedregosa11a.html

Matplotlib: A 2D Graphics Environment 
John D Hunter
Computing in Science & Engineering (2007) https://doi.org/drbjhg 
DOI: 10.1109/mcse.2007.55

Pybedtools: a flexible Python library for manipulating genomic datasets and annotations 
Ryan K Dale, Brent S Pedersen, Aaron R Quinlan
Bioinformatics (2011-12-15) https://doi.org/bps7ds 
DOI: 10.1093/bioinformatics/btr539 · PMID: 21949271 · PMCID: PMC3232365

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/f7dz2d
https://doi.org/10.1101/gr.176552.114
https://www.ncbi.nlm.nih.gov/pubmed/25883319
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448687
https://doi.org/cmrms3
https://doi.org/10.1093/bioinformatics/btq033
https://www.ncbi.nlm.nih.gov/pubmed/20110278
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832824
https://doi.org/f5bpzf
https://doi.org/10.1371/journal.pone.0067863
https://www.ncbi.nlm.nih.gov/pubmed/23874456
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706434
https://doi.org/d7zwd2
https://doi.org/10.1093/bioinformatics/btp163
https://www.ncbi.nlm.nih.gov/pubmed/19304878
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682512
https://doi.org/gfzprs
https://doi.org/10.7287/peerj.preprints.970v1
https://keras.io/
https://doi.org/gm2ghn
https://doi.org/10.5281/zenodo.4724125
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://doi.org/drbjhg
https://doi.org/10.1109/mcse.2007.55
https://doi.org/bps7ds
https://doi.org/10.1093/bioinformatics/btr539
https://www.ncbi.nlm.nih.gov/pubmed/21949271
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232365
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


75. 

76. 

77. 

78. 

79. 

Bio.Phylo: A unified toolkit for processing, analyzing and visualizing phylogenetic trees in
Biopython 
Eric Talevich, Brandon M Invergo, Peter JA Cock, Brad A Chapman
BMC Bioinformatics (2012-08-21) https://doi.org/gb8t75 
DOI: 10.1186/1471-2105-13-209 · PMID: 22909249 · PMCID: PMC3468381

Technical Note on Transcription Factor Motif Discovery from Importance Scores (TF-
MoDISco) version 0.5.6.5 
Avanti Shrikumar, Katherine Tian, Žiga Avsec, Anna Shcherbina, Abhimanyu Banerjee, Mahfuza
Sharmin, Surag Nair, Anshul Kundaje
arXiv (2020-05-01) https://arxiv.org/abs/1811.00416

NumPy / SciPy Recipes for Data Science: k-Medoids Clustering 
Christian Bauckhage
Unpublished (2015) https://doi.org/gksp3j 
DOI: 10.13140/2.1.4453.2009

FIMO: scanning for occurrences of a given motif 
Charles E Grant, Timothy L Bailey, William Stafford Noble
Bioinformatics (2011-04-01) https://doi.org/fcp52k 
DOI: 10.1093/bioinformatics/btr064 · PMID: 21330290 · PMCID: PMC3065696

Gnu Parallel 2018 
Ole Tange
Zenodo (2018-04-27) https://doi.org/gmzd4j 
DOI: 10.5281/zenodo.1146014

Open collaborative writing with Manubot 
Daniel S Himmelstein, Vincent Rubinetti, David R Slochower, Dongbo Hu, Venkat S Malladi,
Casey S Greene, Anthony Gitter
PLOS Computational Biology (2019-06-24) https://doi.org/c7np 
DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468292doi: bioRxiv preprint 

https://doi.org/gb8t75
https://doi.org/10.1186/1471-2105-13-209
https://www.ncbi.nlm.nih.gov/pubmed/22909249
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468381
https://arxiv.org/abs/1811.00416
https://doi.org/gksp3j
https://doi.org/10.13140/2.1.4453.2009
https://doi.org/fcp52k
https://doi.org/10.1093/bioinformatics/btr064
https://www.ncbi.nlm.nih.gov/pubmed/21330290
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065696
https://doi.org/gmzd4j
https://doi.org/10.5281/zenodo.1146014
https://doi.org/c7np
https://doi.org/10.1371/journal.pcbi.1007128
https://www.ncbi.nlm.nih.gov/pubmed/31233491
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611653
https://doi.org/10.1101/2021.11.11.468292
http://creativecommons.org/licenses/by/4.0/


Supplementary Information

Figure S1:  auPR of different across-species accessibility model configurations. From left to right: 1000bp windows,
300bp windows, 600bp windows, training and testing within only grasses, using a training set balanced on both
accessibility and distance class, exponential activation on the convolutional layer, and testing on Arabidopsis and Maize
while training on the rest.

Figure S2:  Receiver operating characteristic curves of the across-species models per hold-out species. The gray dashed
line is the baseline expectation for a random classifier. The area under the curve is given inside the parentheses for
each species in the legend.
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Figure S3:  Precision-recall curve comparison of across-species a2z model with the bag-of-kmer model in Z. mays.

Figure S4:  auPR of both model configurations with respect to genome size. The dashed line is an exponential fit to the
across-species model auPR values.
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Figure S5:  Counts of accessible regions in the across-species test sets by distance class and species.

Figure S6:  Comparison of false discovery rate (FDR) versus false omission rate (FOR) between models.

Figure S7:  Precision-recall curve comparison between a2z model and the repeat-masked a2z model in Z. mays.
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Figure S8:  Precision-recall and receiver operating characteristic curves of an angiosperm-trained a2z model on yeast
and a human cell line.

Figure S9:  Cell type specificity of maize scATAC-Seq peaks.
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Figure S10:  Top 3 TF-MoDISco patterns for four a2z models. A. thaliana is the left column, Z. mays is the right column.
Accessibility is the top row and methylation is the bottom row. Within each species and chromatin feature combination
the patterns are ranked from top to bottom by the number of supporting seqlets for that pattern.
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Figure S11:  Multidimensional scaling of the top 10 high-effect medoid kmers for each species and chromatin feature
model combination, colored by species.

Figure S12:  Proportion of high-effect kmers that significantly (q-value <= 0.05) matched JASPAR CORE plantae motifs
with FIMO, grouped by species and chromatin feature.
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