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Abstract

The genetics of domestication has been extensively studied ever since the rediscovery of

Mendel’s law of inheritance and much has been learned about the genetic control of trait dif-

ferences between crops and their ancestors. Here, we ask how domestication has altered

genetic architecture by comparing the genetic architecture of 18 domestication traits in

maize and its ancestor teosinte using matched populations. We observed a strongly

reduced number of QTL for domestication traits in maize relative to teosinte, which is consis-

tent with the previously reported depletion of additive variance by selection during domesti-

cation. We also observed more dominance in maize than teosinte, likely a consequence of

selective removal of additive variants. We observed that large effect QTL have low minor

allele frequency (MAF) in both maize and teosinte. Regions of the genome that are strongly

differentiated between teosinte and maize (high FST) explain less quantitative variation in

maize than teosinte, suggesting that, in these regions, allelic variants were brought to (or

near) fixation during domestication. We also observed that genomic regions of high recom-

bination explain a disproportionately large proportion of heritable variance both before and

after domestication. Finally, we observed that about 75% of the additive variance in both

teosinte and maize is “missing” in the sense that it cannot be ascribed to detectable QTL

and only 25% of variance maps to specific QTL. This latter result suggests that morphologi-

cal evolution during domestication is largely attributable to very large numbers of QTL of

very small effect.
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Author summary

Although the genetics of trait differences between crops and their progenitors has been

extensively studied, far less is known about the genetic architecture of trait variation in

crop progenitors and how this architecture was altered during domestication. Here, we

address this issue by comparing the genetic architecture of 18 domestication traits in

maize and its ancestor teosinte using matched populations. Our results show that genetic

architecture was reshaped during domestication in multiple ways. Maize has a greatly

reduced number of QTL for domestication traits relative to teosinte and alleles at these

QTL show greater dominance in maize. QTL alleles of large effect are present in both

maize and teosinte, but more common in maize. We observed that regions of the genome

that are strongly differentiated between teosinte and maize (high FST) explain less additive

variation in maize than teosinte and that genomic regions of high recombination explain

a disproportionately large proportion of heritable variance both before and after domesti-

cation. Finally, we observed that about 75% of heritability is “missing” in the sense that it

not associated with detectable QTL, which suggests that the raw material for domestica-

tion was largely composed of vast numbers of QTL of diminishingly small effects.

Introduction

Ever since Charles Darwin employed domestication as a model for natural evolution [1], crop

domestication has been extensively studied by evolutionary biologists [2–7]. Part of the power

of domestication as a model for evolution is that the crop ancestors are extant and cross-com-

patible with crop species, allowing genetic dissection of the inheritance of domestication traits.

Domestication also allows us to discern the impact of selection on genetic architecture through

comparison of pre- and post-domestication populations. Since the genetic architecture of the

ancestral species influences the possible outcomes when selection is applied to move a popula-

tion to a new optimum, such comparisons can reveal how genetic architecture can both facili-

tate and constrain domestication [8].

Maize and teosinte offer an excellent system for genetic analysis of domestication. Both

phylogenetic and archaeological evidence revealed that maize was domesticated from Balsas

teosinte (Z. mays ssp. parviglumis) by a single domestication event in southern Mexico about

9,000 years ago [9, 10]. As outcrossing species, teosinte and maize conform to many of the

assumptions underlying standard population genetic models, empowering the application of

diverse evolutionary analyses [11]. Maize has undergone dramatic morphological change from

its wild ancestor teosinte during domestication. A typical teosinte plant has multiple long lat-

eral branches, each tipped with a tassel, whereas a typical maize plant has one or two short

branches, each tipped with a single ear. A teosinte plant produces many two-ranked ears, each

with only a few fruitcase-enveloped kernels, easily shattering into single-seed units at maturity.

In contrast, a maize plant produces only one or two multiple-ranked ears, each with hundreds

of naked grains, remaining intact on the cob at maturity. Finally, maize has a large number of

genomic and genetic resources available (https://maizegdb.org/), including high-quality

genomes of inbred lines [12–15], high-density genotypic data [16], and diverse mapping popu-

lations [17, 18].

In this paper, we report a comprehensive comparison of genetic architecture in 18 domesti-

cation traits for matched populations of a maize landrace and teosinte. Our overarching goal is

to better define genetic architecture in maize and teosinte and ask how it changed as a result of

domestication. From our analyses, we observed that genetic architecture has been reshaped
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during domestication with a substantial reduction in the number of segregating QTL affecting

domestication traits. We observed that regions of the genome that are strongly divergent

between teosinte and maize (high FST) explain less variation in maize than teosinte. We also

observed that genomic regions of high recombination explain a disproportionately large pro-

portion of heritable variance both before and after domestication. Finally, we observed that

only 25% of the additive variance in both teosinte and maize can be ascribed to specific QTL.

Overall, our work suggests that trait evolution during maize domestication is largely attribut-

able to very large numbers of QTL of very small effects.

Results

QTL and their effects

Our maize landrace population shows a strongly reduced number of QTL for domesti-

cation traits relative to our teosinte population, indicating that the domestication bottle-

neck and/or selection caused the loss or fixation of many functional alleles. Using a

stepwise regression approach, we performed genome-wide QTL scans for 18 domestication

traits scored in both our teosinte and maize landrace populations (Table 1). We detected a

total of 451 QTL in teosinte (ranging from 3 to 52 per trait) but only 213 QTL in maize land-

race (ranging from 0 to 27) (Fig 1; S1 Table). We grouped the 18 traits into three previously

defined groups: vegetative/flowering time, reproductive, and environmental response traits

[8]. Among the three predefined trait groups, reproductive traits showed the greatest reduction

in the number of QTL, and vegetative traits a strong, but more modest reduction. Environ-

mental response traits showed slightly more QTL in maize landrace than in teosinte, but the

overall trend is a substantial reduction in QTL numbers after domestication. The most striking

Table 1. Trait abbreviations.

Trait Acronym Units Trait Group

Days to Anthesis DTA days Veg/FT

Days to Silking DTS days Veg/FT

Plant Height PLHT cm Veg/FT

Leaf Length LFLN cm Veg/FT

Leaf Width LFWD cm Veg/FT

Tiller Number TILN count EnvRes

Prolificacy PROL count EnvRes

Lateral Branch Node Number LBNN count EnvRes

Lateral Branch Length LBLN mm EnvRes

Lateral Branch Internode Length LBIL mm EnvRes

Ear Length EL mm Rep

Cupules per Row CUPR count Rep

Ear Diameter ED mm Rep

Grains Per Ear GE count Rep

Ear Internode Length EILN mm Rep

Total Grain per Plant TGPP count Rep

Total Grain Weight per Plant TGWP g Rep

Grain Weight GW mg Rep

List of 18 teosinte-maize landrace comparable traits and the corresponding acronyms, units and trait groups. Veg/

FT: Vegetative/Flowering Time; EnvRes: Environmental Response; Rep: Reproductive.

https://doi.org/10.1371/journal.pgen.1008791.t001
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difference was observed for GW, for which we detected 52 QTL in teosinte but only 6 QTL in

maize landrace (S1 Table).

Large effect QTL were observed in both populations but appear more common in maize

landrace. Here, we define large effect as a QTL with a standardized additive effect greater

than 1 phenotypic standard deviation, where the additive effect was estimated by stepwise

regression. Seven of the 451 QTL in teosinte have a large effect and 12 of the 213 QTL in maize

landrace have a large effect (Fig 2; S1 Table). The frequency of 5.6% in maize landrace is signif-

icantly larger than 1.6% in teosinte (P = 0.0052, two-sided Fisher’s exact test). Thus, large effect

QTL occur in both populations but they are more common (both in frequency and total num-

ber) in maize landrace. One example of a large effect QTL is a GW QTL on chromosome 4 in

teosinte (T/A, S4_184126058, P = 6.38E-50) (Fig 3A), where this QTL has an additive effect of

8.7 mg in GW, which corresponds to a 34% increase from the population mean of 25.6 mg or

1.61 phenotypic standard deviations. Another example is a major effect QTL for PLHT on

chromosome 7 in maize landrace (C/T, S7_3086083, P = 4.10E-28) (Fig 3B), where this QTL

has an additive effect of 44.3 cm in PLHT, which corresponds to a 19% decrease from the pop-

ulation mean of 230.5 cm or 1.34 phenotypic standard deviations.

Overall, large effect QTL have low MAF for both teosinte and maize landrace, suggest-

ing mutation-selection balance may play an important role in modulating genetic varia-

tion in both taxa. By plotting the distribution of standardized additive effect against MAF

for all QTL (Fig 2), we observed that the largest effect QTL have low MAF in both teosinte and

maize landrace. The rarest alleles (parent MAF < 0.05) have effects that are in a range from

0.01 to 4.05 phenotypic standard deviations, while the effects of the most common alleles (par-

ent MAF > 0.3) never exceed 0.3 phenotypic standard deviations. This is true of both teosinte

and maize landrace. For example, the largest effect QTL for GW in teosinte (T/A,

S4_184126058, P = 6.38E-50) has a MAF of 0.012 and the minor allele comes from a single one

of our 49 teosinte parents (PC_N57_ID2) (Fig 3A). Similarly, the largest effect QTL for PLHT

in maize landrace (C/T, S7_3086083, P = 4.10E-28) has a MAF of 0.032 and the minor allele

Fig 1. QTL summary. The number of QTL is plotted against trait groups for teosinte and maize landrace, respectively.

The exact number of QTL in each group is shown above each bar. The trait groups are abbreviated as Veg/FT for

Vegetative/Flowering Time, EnvRes for Environmental Response, and Rep for Reproductive.

https://doi.org/10.1371/journal.pgen.1008791.g001
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comes from a single one of our 40 maize landrace parents (164_1) (Fig 3B). These observations

suggest that most segregating large effect alleles are likely the product of relatively recent muta-

tion and selection has not yet had sufficient time to either remove them from the population

or bring them to fixation.

A concern with this analysis is that effect estimates for rare alleles may be biased upwards

because of the relatively small sample size for rare alleles which may cause these QTL to only be

detected when their effects are overestimated. To address this concern, we plotted the distribu-

tion of standardized additive effect for SNPs whether the SNP is significant or not by each trait,

where the additive effects were estimated from our GLM model. Also, to minimize error in the

estimation of the effects of rare allele, we required a minimum of 10 homozygous plants for the

rare allele. Examination of the plot of MAF by effect size this way still indicates that rare alleles

have larger effects for all 18 traits (S1 Fig). This result indicates that bias in the estimate of rare

allele effect sizes cannot fully explain the observed relationship between effect size and MAF.

Balancing selection may maintain some genetic variation in both teosinte and maize

landrace. Examination of the plots of MAF by effect size shows a few QTL with high fre-

quency and moderately strong effects (Fig 2). Such alleles could be maintained in the popula-

tion by balancing selection. An interesting example of this is a QTL on chromosome 3 for

DTA in teosinte (C/T, S3_160586402, P = 9.64E-16), where the MAF is 0.48 and the additive

effect is 0.19 phenotypic standard deviations (Fig 4A). This pattern fits the expectation of

Fig 2. The relationship between effect size and minor allele frequency (MAF). The standardized additive effect, calculated as additive effect by

phenotypic standard deviation in absolute value, is plotted against MAF for each QTL. MAF was calculated from parent data. Large effect QTL is

defined as a QTL with a standardized additive effect greater than 1 phenotypic standard deviation as indicated by blue dotted lines.

https://doi.org/10.1371/journal.pgen.1008791.g002
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balancing selection. Similarly, we observed a QTL on chromosome 1 for GW in maize landrace

(A/G, S1_44817082, P = 1.75E-16), where the MAF is 0.45 and the additive effect is 0.25 phe-

notypic standard deviations (Fig 4B), suggesting this QTL may be under balancing selection.

There is more dominance in maize landrace than teosinte, which may be related to the

depletion of additive variance by selection during domestication. Previously, Yang et al.

[8] reported that there is more dominance genetic variance than additive variance in maize

landrace relative to teosinte, and these authors suggested that this pattern may be the result of

selection during domestication having depleted the additive variance. Here, by plotting the

ratio of dominance to additive effects (D/A) (Fig 5A), we observed a small shift to greater dom-

inance in maize landrace than in teosinte. The mean absolute value of the D/A ratio is 0.76 in

teosinte (ranging from 0.001 to 11.21), while the mean absolute value of the D/A ratio is 1.11

in maize landrace (ranging from 0.01 to 12.77). Moreover, the cumulative distribution plot of

D/A shows a significant difference in the two distributions (Fig 5B; P = 1.12E-05, Kolmogo-

rov-Smirnov test). The increase of the D/A ratio in maize landrace relative to teosinte suggests

Fig 3. Examples of QTL under mutation-selection balance. (A) The distribution of detected QTL for GW in teosinte. The most significant QTL is

labeled as S4_184126058. (B) The phenotypic effect of QTL S4_184126058. (C) The distribution of detected QTL for PLHT in maize landrace. The

most significant QTL is labeled as S7_3086083. (D) The phenotypic effect of QTL S7_3086083. In (A) and (C), QTL in different chromosomes are

shown in different colors; R2 stands for r-square explained by overall QTL model. In (B) and (D), the phenotype is shown in residuals after

accounting for covariates; |a| stands for absolute additive effect (mean ± s.e.).

https://doi.org/10.1371/journal.pgen.1008791.g003
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that additive variants were more likely fixed or lost during domestication and thus aligns with

the observation of Yang et al. [8].

Candidate genes for QTL in teosinte and maize landrace

Our analyses identify multiple strong candidate genes in both teosinte and maize land-

race. Although our population design and stepwise regression analysis provide only limited

precision for mapping QTL to the underlying genes, we saw multiple well-defined peaks in the

Manhattan plots from our GLM scan of the genome, allowing us to identify candidate genes

associated with the most significant QTL peaks (P<1E-20) (Table 2). There were 9 such QTL

in teosinte and 7 QTL in maize landrace. In teosinte, potential candidate genes were defined

for DTS, PLHT, LFWD, PROL, ED and GW. For example, the largest effect QTL for DTS is

located on chromosome 3 (G/A, S3_161034847, P = 4.87E-40) upstream of SBP-transcription
factor 22 and a known flowering time gene MADS-transcription factor 69 (ZmMADS69,

Zm00001d042315). Interestingly, the largest QTL for DTA (C/T, S3_160586402, P = 9.64E-16)

Fig 4. Examples of QTL under balancing selection. (A) The distribution of detected QTL for DTA in teosinte. The most significant QTL is labeled

as S3_160586402. (B) The phenotypic effect of QTL S3_160586402. (C) The distribution of detected QTL for GW in maize landrace. The most

significant QTL is labeled as S1_44817082. (D) The phenotypic effect of QTL S1_44817082. In (A) and (C), QTL in different chromosomes are

shown in different colors; R2 stands for r-square explained by overall QTL model. In (B) and (D), the phenotype is shown in residuals after

accounting for covariates; |a| stands for absolute additive effect (mean ± s.e.).

https://doi.org/10.1371/journal.pgen.1008791.g004
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is nearby, located downstream of ZmMADS69. For GW, the largest effect QTL is located on

chromosome 4 (T/A, S4_184126058, P = 6.38E-50) upstream of AP2-EREBP-transcription fac-

tor 17. A second interesting candidate is the next gene downstream, trehalose-6-phosphate

Fig 5. The distribution of dominance-by-additive effect. (A) Density is plotted for the ratio of dominance by additive effects in absolute value. The

blue dotted line indicates |D/A| = 1 and the mean value (μ) of |D/A| for teosinte and maize landrace population is shown in red text. (B) The

cumulative distribution is plotted for |D/A|, with P value calculated by Kolmogorov-Smirnov test to reflect the difference in the two distributions.

https://doi.org/10.1371/journal.pgen.1008791.g005

Table 2. Candidate genes under P<1E-20.

Population Trait QTL Chr Position Allele Maf probF StdAddEffect Candidate gene Description

Teosinte DTS S3_161034847 3 161,034,847 G/A 0.14 4.87E-40 0.44 ZmMADS69 MADS-box transcription factor69

Teosinte PLHT S1_156526333 1 156,526,333 C/T 0.02 6.45E-28 1.10 rs2 rough sheath2

Teosinte LFWD S1_160665121 1 160,665,121 C/T 0.04 7.16E-25 0.84 bsd2 bundle sheath defective2

Teosinte LFWD S6_170102149 6 170,102,149 A/C 0.02 1.73E-25 0.95 tsh1 tassel sheath1

Teosinte PROL S1_194694757 1 194,694,757 C/T 0.02 5.43E-23 1.18

Teosinte ED S4_182939860 4 182,939,860 C/T 0.01 9.70E-28 1.29 TPP4 trehalose-6-phosphate phosphatase4

Teosinte GW S1_213592730 1 213,592,730 G/A 0.19 3.53E-24 0.21

Teosinte GW S4_184126058 4 184,126,058 T/A 0.01 6.38E-50 1.61 TPP4 trehalose-6-phosphate phosphatase4

Teosinte GW S5_94468458 5 94,468,458 C/T 0.14 2.73E-24 0.29

Landrace PLHT S7_3086083 7 3,086,083 C/T 0.03 4.10E-28 1.34 rs1 rough sheath1

Landrace TILN S1_184111630 1 184,111,630 G/T 0.02 1.64E-21 0.64

Landrace TILN S2_5692647 2 5,692,647 C/T 0.03 1.17E-23 0.34

Landrace TILN S5_172000041 5 172,000,041 C/A 0.04 8.96E-31 0.61

Landrace TILN S7_5797272 7 5,797,272 G/A 0.02 4.07E-25 0.80

Landrace EILN S8_160608498 8 160,608,498 A/C 0.03 1.84E-25 1.46

Landrace TGWP S1_247411382 1 247,411,382 G/A 0.04 3.46E-29 4.05

https://doi.org/10.1371/journal.pgen.1008791.t002
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phosphatase 4 (TPP4, Zm00001d052227). Interestingly, this QTL is located within the inver-

sion on chromosome 4 (Inv4m, B73 RefGen v4: 171.8–186.0 Mb) [19]. For LFWD, the largest

effect QTL is located on chromosome 6 (A/C, S6_170102149, P = 1.73E-25) in a gene encoding

2-oxoglutarate-dependent dioxygenase AOP1, but there is another gene nearby, tassel sheath1
(tsh1, Zm00001d039113), known to effect leaf size. For PLHT, the largest effect QTL is located

on chromosome 1 (C/T, S1_156526333, P = 6.45E-28) upstream of a gene encoding U-

box domain-containing protein 13. There is another gene nearby, rough sheath2 (rs2,

Zm00001d030737), which encodes a MYB-domain protein and is expressed in lateral organ

primordia and their initials. This gene has been reported to affect plant architecture including

plant height [20].

In maize landrace, such large effect QTL were detected for PLHT, TILN, EILN and TGWP.

For example, the largest effect QTL for PLHT is located on chromosome 7 (C/T, S7_3086083,

P = 4.10E-28) just upstream of a gene encoding phosphoprotein phosphatase inhibitors. As

was also true for the major PLHT QTL in teosinte, there is a rough sheath1 gene (rs1,

Zm00001d018742) nearby [21]. For EILN, the largest effect QTL is located on chromosome 8

(A/C, S8_160608498, P = 1.84E-25) upstream of a gene encoding SUPPRESSOR OF ABI3-5.

For TILN, the QTL on chromosome 2 (C/T, S2_5692647, P = 1.17E-23) is located upstream of

a gene encoding a zinc finger domain-containing protein.

Teosinte and maize landrace have a similar level of missing heritability

The variation in our populations can be attributed to both QTL of effect sizes that are large

enough to be detected by our QTL scan, as well as very small effect QTL that escape detection

but still contribute to heritable variation. The latter control the “missing heritability”. By fitting

linear models with QTL and/or covariates, we obtained the R2 values for the QTL alone, family

effects (Principal Components, PCs) alone, and R2 values for variance explained by neither

QTL nor family effects. We defined “missing heritability” as the portion of the additive varia-

tion not explained by the QTL. We compared these values to the additive genetic variance of

each trait reported by Yang et al. [8].

Most heritable variation is "missing" in both teosinte and maize landrace, suggesting

that undetectable small effect QTL predominate in the genetic architecture of these popu-

lations. We observed that detectable QTL could explain only 26% and 21% of additive

genetic variance for teosinte and maize landrace, respectively, signifying that the remaining

variation (74% and 79%, respectively) is missing (Fig 6A; S2 Table). This result indicates that

QTL of very small effect explain most of the variance in both teosinte and maize landrace and

that domestication did not alter the amount of missing heritability appreciably. Part of the

missing heritability is captured by family effects (PCs in our stepwise regression model), corre-

sponding to 46% for teosinte and 51% for maize landrace. These percentages may represent

functional alleles that are unique to individual parents (rare alleles). Finally, about 17% and

26% of additive genetic variance in teosinte and maize landrace, respectively, cannot be associ-

ated with either QTL or family effects and may represent very small effect common alleles that

occur in multiple families in our populations.

If alleles of very small effects distributed evenly throughout the genome are predominant in

controlling heritable variation, then we should observe a correlation between chromosome

length and the proportion of the variance explained. We performed variance component anal-

ysis (VCA) for 18 traits by chromosomes. The results show that the proportion of variance

explained by chromosome is highly correlated with the length of chromosome for both teo-

sinte (r = 0.84, P = 0.0024) and maize landrace (r = 0.79, P = 0.0069) (Fig 6B), a result consis-

tent with an important role for small effect alleles explaining most heritable variance.
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Partitioning of the genetic variance by genomic features

To estimate the proportion of trait genetic variance associated with different features of the

genome, we performed variance component analysis for 18 traits in both teosinte and maize

landrace. This analysis involved classifying SNPs into subsets depending upon different geno-

mic features, generating kinship matrices for each subset, and fitting these kinship matrices

along with the phenotypic data to partition the genetic variance (heritability, h2).

High recombination regions explain most heritable variance in both teosinte and maize

landrace. To assess how recombination would affect the heritable variance, we calculated the

recombination rate in windows of 10 kb, defined quintiles of the 10 kb recombination rates

after accounting for gene density, and used SNPs in each quintile to calculate kinship matrices

in teosinte and maize landrace, respectively. By comparing the relative proportion of additive

genetic variance across 18 traits, we observed that regions with the highest recombination rate

(top quintile) explain a very large proportion of the additive genetic variance on average in

both teosinte and maize landrace although they represent only 20% of the genome (Fig 7A),

suggesting that high recombination regions harbored most of the variation upon which

Fig 6. Missing heritability. (A) The percentage of variance explained by QTL and non-QTL, respectively. Most heritable variation is "missing" in

both teosinte and maize landrace. (B) The relationship between chromosome length and the proportion of variance. The correlation coefficient r
and corresponding P value is indicated. The proportion of variance explained by chromosomes is positively correlated with chromosome length in

both teosinte and maize landrace.

https://doi.org/10.1371/journal.pgen.1008791.g006
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selection could act during domestication. While variance in these regions was somewhat

depleted by domestication, it remains high in maize landrace.

Regions of the genome that are most divergent between teosinte and maize landrace

explain more heritable variance in teosinte than in maize landrace. To assess the diver-

gence between teosinte and maize landrace, we calculated FST [22] using 32.5 million SNPs

that were either segregating in teosinte or maize landrace and obtained an average FST value in

windows of 50 SNPs. The 50-SNP FST value ranges from 0 to 0.77 and has an average of 0.07.

For VCA, we defined quintiles of FST and used SNPs in each quintile to calculate kinship

matrices in teosinte and maize landrace, respectively. By comparing the relative proportion of

additive genetic variance across 18 traits, we observed that the most divergent bin explains

~8% of the additive genetic variance on average in teosinte, which is more than ~3% in maize

landrace (Fig 7B), suggesting that divergence is associated with depletion of additive genetic

variants in the maize landrace.

The inheritance of other traits in teosinte

Beyond the QTL analysis for 18 common core domestication traits in teosinte and maize land-

race, we also identified QTL for seven additional traits that were scored in teosinte but not in

maize landrace. These traits include BRAN, CULM, FCLN, FCLW, FCTR, SDDM and STAM

(S3 Table). We detected a total of 222 QTL, ranging from 6 to 56 per trait (S1 Table). For these

traits, we also observed that large effect QTL have low MAF (S2 Fig). For example, we detected

a total of 19 QTL for CULM, which is a domestication trait related to vegetative gigantism.

There were two large effect QTL for CULM which have a standardized additive effect greater

Fig 7. VCAP by different genomic features. (A) Five kinship matrices were calculated by SNPs in quintiles of the 10

kb recombination rates after accounting for gene density and then variances were estimated for each kinship. Rec

stands for the residual of recombination rate after regression for gene density. (B) Five kinship matrices were

calculated by SNPs in quintiles of the FST value and then variances were estimated for each kinship.

https://doi.org/10.1371/journal.pgen.1008791.g007
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than 1 phenotypic standard deviation (S1 Table). The largest effect QTL was detected on chro-

mosome 1 (G/A, S1_178995091, P = 1.14E-27) but there are no obvious candidate genes

nearby. Interestingly, we detected a QTL on chromosome 1 (G/A, S1_75448410, P = 3.06E-09)

which is located within the inversion on chromosome 1 (Inv1n, B73 RefGen v4: 65.9–116.7

Mb) where a CULM QTL had previously been mapped [23].

A major change during maize domestication is the loss of seed dormancy from teosinte to

maize. We detected six QTL for seed dormancy (SDDM). Among the QTL, there were three

large effect QTL which have a standardized additive effect greater than 1 phenotypic standard

deviation (S1 Table). The largest effect QTL was detected on chromosome 6 (G/T,

S6_151838921, P = 1.10E-22) but there are no obvious candidate genes nearby. Interestingly,

none of the six QTL exceed a MAF of 0.03, suggesting mutation-selection balance may play an

important role in modulating genetic variation for SDDM. The common allele at five of the six

QTL is associated with rapid germination.

Discussion

Our results showed that the maize landrace population has far fewer QTL for domestication

traits as compared to our teosinte population. Previous reports suggest that most domesticated

crops have experienced a “domestication bottleneck” which reduced their nucleotide diversity

relative to their wild ancestors [24]. For maize, there has been on average a reduction in nucle-

otide diversity of 30% as compared to teosinte and this reduction becomes much more severe

(>65%) for genes under selection [25, 26]. Given that the domestication bottleneck and/or

selection would cause the loss or fixation of many functional alleles at QTL, it was expected to

find a reduced number of QTL in our maize landrace relative to teosinte.

Our observation of more and therefore novel QTL in teosinte compared to maize implies

that teosinte should possess many useful alleles absent in maize. This represents an opportu-

nity for breeding, as crop wild relatives have been extremely valuable resource to identify allelic

variation by genome-wide association studies (GWAS) or quantitative trait locus (QTL) map-

ping approaches, and these alleles, if favorable, can be introduced into a domesticated back-

ground by marker-assisted selection [27, 28]. For maize-teosinte, a BC2S3 RIL (recombinant

inbred line) population [29] and TeoNAM (teosinte nested association mapping) population

[17] have been developed to comprehensively map QTL from teosinte. Using this BC2S3 popu-

lation, a recent study demonstrated that fine-mapping QTL for maize leaf angle and then

transferring the favorable teosinte allele into modern hybrids can enhance high-density maize

grain yield [30]. Therefore, the favorable alleles of QTL that we detected in our teosinte popu-

lation could be introduced into maize cultivars in the future.

Our observation that large effect alleles in both teosinte and maize landrace are rare fits

expectations under mutation-selection balance [11]. Rare alleles of large effect would be rap-

idly removed if detrimental or driven to fixation if beneficial due to strong selection, and thus

not be observed at middling frequencies. In contrast, alleles of very small effect experience

weaker selection such that they move more slowly to fixation and can exhibit middling fre-

quencies [31, 32]. Height in humans is an example from the literature of a trait apparently

under mutation-selection balance, showing an inverse relationship between effect size and

allele frequency [33]. Such an inverse relationship is also observed from a QTL study of inflo-

rescence traits in maize, in which the number of large-effect QTL is very few and caused by

low-frequency SNPs [34]. In our study, one example of a rare allele of large effect is the QTL

for GW in teosinte (T/A, S4_184126058, P = 6.38E-50), where the MAF is 0.012 among the

progeny and the minor allele comes from a single one of our 49 teosinte parents
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(PC_N57_ID2) (Fig 3A). Overall, the negative correlation between effect size and MAF in our

data suggest an important role for mutation-selection balance in teosinte and maize.

While mutation-selection may be the principal force operating on QTL, we observed some

hints that balancing selection may be present as well. In contrast to the expectation that large

effect alleles are rare under mutation-selection balance, allele frequencies are expected to be

more intermediate if balancing selection is operating [11]. An example of possible balancing

selection in our data is the largest effect QTL for DTA in teosinte on chromosome 3 near

ZmMADS69 with an MAF of 0.48 (Fig 4A). Flowering time is a trait for which selection pres-

sure may vary from year to year due to annual variation in rainfall and temperature [35]. In

this situation, allelic fitness will oscillate from year to year, preventing segregating functional

alleles at the locus from either being lost or fixed. However, we note that stabilizing selection

on a phenotype which has recently shifted its optimum can also explain high frequency large

effect alleles without invoking balancing selection [36].

For seed dormancy in teosinte, we expected to observe evidence for balancing selection in

the form of functional alleles maintained at a high frequency since adaptation should favor a

mix of phenotypes with seeds that germinate over a broad temporal range. Seed dormancy

desynchronizes germination such that not all seed germinates the following season when envi-

ronmental conditions for plant growth may be unsuitable in some years. Thus, selection

should favor allelic diversity in wild species such that at least some seeds will be programed for

delayed germination until future growth seasons [37]. Contrary to this expectation, we

observed all six QTL detected for seed dormancy do not exceed a MAF of 0.03 which better fits

a mutation-selection balance mechanism. In domesticated cultivars, it is desirable to have uni-

form germination to ensure synchronous maturity and therefore efficient harvesting by farm-

ers [38, 39]. Accordingly, there is no seed dormancy in maize, and seeds, once planted,

germinate readily.

Although large-effect QTL are rare, we observed the largest allele effects in maize (Fig 2).

This reflects the differences in demography and selective forces acting on maize compared to

teosinte. Teosinte traits are under selection because of their genetic correlations with fitness.

Human selection in maize includes some similar fitness components (such as viability and

fecundity), but the genetic correlations among maize traits are generally lower than among

teosinte traits [8], and humans also select strongly for ear and kernel type, for example, possi-

bly at the expense of natural fitness traits [40, 41]. Therefore, selection coefficients on fitness-

related traits in maize are likely to be lower than in teosinte, reducing the effectiveness of selec-

tion on fixing or purging large-effect alleles. In combination with reduced selection, maize

populations are managed by humans, who tend to plant seed from relatively few female

parents [42], leading to greater genetic drift; but also migration is likely much more important

in maize landraces than in teosinte because of active seed exchange among Mexican farmers

[43, 44]. Recent migration could introduce novel alleles that were already fixed in other maize

landraces, resulting in their segregation in the study population.

Another possibility is that the effective population size of our maize landrace is smaller than

that of our teosinte population, so that selection would be more effective in teosinte. According

to the Watterson estimator θ = 4Neμ, where Ne is the effective population size and μ is the per-

generation mutation rate of the population [45], we calculated θT for the teosinte population

and θM for the maize population using the common set of 4.2 million SNPs. The results show

the mean Watterson’s θ in maize is 89.8% smaller than in teosinte (θM = 3.89E-04; θT = 4.33E-

04). If we use the estimates of mutation rate in maize, which is around 3×10−8 per site per gen-

eration [46, 47], then Ne in our maize landrace is smaller than Ne in our teosinte population,

thus selection would be less effective in maize landrace and cannot bring large effect alleles

into loss or fixation.
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We observed more dominance in maize landrace than teosinte as shown by an increase in

D/A ratio (Fig 5), suggesting that the additive genetic variants were depleted at a faster rate

than the dominance genetic variants during domestication. This is consistent with the observa-

tion of Yang et al. [8] that selection during domestication depleted the additive variance rela-

tive to the dominance variance. Population genetic theory has shown that traits that were

subject to directional selection have significantly higher dominance estimates than traits that

are not subject to strong selection [48, 49]. This theory aligns with our observation that maize

landrace, which has been subject to strong selection, has an excess of dominant variants rela-

tive to teosinte for domestication traits.

Genomic scans can help to identify candidate genes for follow-up analyses. Our stepwise

regression approach detected several strong candidate genes in both teosinte and maize land-

race. (1) We detected a major effect QTL on chromosome 3 for flowering time in teosinte near

ZmMADS69, which is under balancing selection. Several recent studies using maize-teosinte

mapping populations have mapped a flowering time QTL containing this gene [17, 50, 51].

Another recent study further fine-mapped ZmMADS69, which functions as a flowering activa-

tor through the ZmRap2.7-ZCN8 regulatory network and contributes to both long-day and

short-day adaptation [52]. Notably, these studies investigated ZmMADS69 in maize-teosinte

crosses and they did not identify the causative site affecting flowering time. Therefore, our

results could be useful for future investigation to discover novel alleles in teosinte alone, and

determine the functional variant of ZmMADS69. (2) We also detected a major effect QTL on

chromosome 4 for seed weight in teosinte. For this QTL, a candidate gene TPP4 is near the

QTL peak. TPP4 is a fully redundant paralogue of RAMOSA3 (RA3) and loss of both RA3 and

TPP4 in maize leads to reduced meristem determinacy and more inflorescence branching

[53]. (3) Finally, we detected two rough sheath genes as candidate QTL of plant height: rough
sheath1 in landrace and rough sheath2 in teosinte. Both genes have been reported to affect

plant architecture including plant height [20, 21]. It may be worth exploring natural variation

in these genes and how domestication has acted on them.

We observed that a large proportion (~75%) of the additive heritability is missing in the

sense that it cannot be ascribed to the detected QTL. This is true for both our teosinte and

maize landrace populations across ten domestication traits (Fig 6). Missing heritability has

been widely investigated in human studies and a well-characterized example is height [54].

The heritability of height has been estimated to be ~0.8 by twin studies, while the ~50

detected variants (QTL) first associated with height explained only ~5% of the phenotypic

variance [55]. Subsequent larger studies identified 180 height genes that accounted for only

10% of the phenotypic variation [56] and 697 genes that explained only 20% of the heritable

variation [57]. There are three main hypotheses regarding missing heritability [58, 59]: (1)

missing heritability is largely due to rare variants of large effect, (2) the majority of missing

heritability is attributable to common variants of very small effect, and (3) heritability esti-

mates from classic twin studies are biased upward so there actually is no missing

heritability.

For our study, large effect but rare variants should be detected because only 49 or 40 parents

contributed to the 4,455 or 4,398 progeny. By our design, variants of large effect that are rare

in nature become relatively common in our mapping population. Despite this design, we

detected relatively few rare QTL of large effect and all QTL together explain only about 25% of

the additive variance. Thus, we can exclude the hypothesis that rare alleles of large effect

explain an appreciable fraction of the missing heritability. Similarly, we used a robust design

and common-garden protocol to estimate trait heritabilities [8], thus it seems unlikely that our

heritabilities are biased upward. Moreover, our heritability estimates and QTL detection were

performed on precisely the same populations. Thus, our data argue strongly that most
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heritable variation in both teosinte and landrace is controlled by a mix of rare and common

alleles of very small effect sizes below the threshold for detection as individual QTL–that is the

infinitesimal model [60, 61].

Our variance component analysis shows that SNPs in regions of high recombination

explain most heritable variance in both teosinte and maize landrace, suggesting recombina-

tion facilitates the maintenance of additive variation in our populations. It has been pro-

posed that there is an interaction between natural selection and the recombination rate,

known as the Hill-Robertson effect, such that there is a reduction in the effectiveness of nat-

ural selection in regions of low recombination [62, 63]. With low recombination, selection

on one locus will drag variants at linked loci to fixation thereby reducing variation in the

region [64]. A well-characterized example is reduced codon bias in regions of low recombi-

nation in Drosophila, which supports that natural selection is less effective against slightly

disadvantageous mutations in regions lacking recombination [65]. Our observation of

greater additive variance being associated with SNPs in regions of high recombination can

be explained by the Hill-Robertson effect although this effect may be confounded with the

Bulmer effect [11], as we observed the lower recombination regions have a bit more LD (S4

Table).

We also show that SNPs in regions of high divergence (high FST) between maize and teo-

sinte explain more variance in teosinte than maize landrace, suggesting variants in these

regions were either removed or brought to fixation during domestication, congruent with the

results of Xue et al. [66]. A common feature of crop genomes is regions of reduced nucleotide

diversity in the crop relative to its wild progenitor [5, 25, 28]. One example is a selective sweep

of ~60–90 kb 5’ to the maize domestication gene tb1 that has an extended region of low nucle-

otide diversity [67, 68]. Another example is a large region on chromosome 10 in maize that

was the target of strong selection during domestication, producing a 1.1 Mb segment with>15

genes that lost essentially all genetic diversity [69]. Such regions of high diversity in teosinte

and low diversity in maize result in higher nucleotide divergence between maize and teosinte

(S3 Fig). Thus, the observation that SNPs in regions of high divergence explain more genetic

variance in teosinte accords with the expectation that many variants should have been either

removed or fixed during and after domestication bottleneck.

The genetic dissection of crop domestication has been a focus of agronomists and evolu-

tionary biologists ever since the rediscovery of Mendel’s law of inheritance. In this enterprise,

diverse approaches have been utilized including classic Mendelian genetics, phylogenetics,

population genetics, genomic scans for selection, analysis of differential gene expression, QTL

mapping, association mapping, and cloning/charactering major genes controlling domestica-

tion traits [4, 5, 7]. In this paper, we take a novel approach of comparing the genetics architec-

ture of 18 domestication traits in maize and its ancestor teosinte using matched populations.

From our analyses, we infer that there has been a substantial depletion of quantitative genetic

variants in maize relative to teosinte in terms of the numbers of segregating QTL for domesti-

cation traits. At the same time, the degree of dominance of segregating QTL has increased in

maize, likely a consequence of selective removal of additive variants. We observed that regions

of the genome that are strongly differentiated between teosinte and maize (high FST) explain

less quantitative variation in maize than teosinte, suggesting that, in these regions, allelic vari-

ants were brought to (or near) fixation during domestication. Finally, we observed that about

75% of the additive variance in both teosinte and maize is missing in the sense that it cannot

be ascribed to detectable QTL and only 25% of variance maps to specific QTL. This latter result

suggests that morphological evolution during domestication is largely attributable to very large

numbers of QTL of very small effect.
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Materials and methods

Population, genotype and phenotype

Data for our analyses were previously published, and so details concerning population con-

struction, plant growth, phenotyping, and SNP genotyping by Genotype-by-Sequence

(GBS) technology for both our teosinte and landrace populations can be found in Yang

et al. [8]. Briefly, a population of 70 teosinte plants from the near the town of Palmar Chico

in Balsas river drainage of Mexico and a population of 55 maize landrace (Tuxpeño) plants

from a nearby location were sampled. DNA from all 125 plants was used for whole-

genome-sequencing (WGS). Of the 70 teosinte plants, 49 were used as parents and selfed

and intermated to produce a total of 4,455 teosinte progeny. Similarly, of the 55 landrace

plants, 40 were used as parents and selfed and intermated to produce a total of 4,398 maize

landrace progeny. The parentage of progeny was determined using the GBS data of the

parents and progeny.

The teosinte and landrace progeny were grown in neighboring fields near Homestead, Flor-

ida over during two winter seasons (2013–14 and 2014–15). Eighteen domestication traits

were scored on both the teosinte and landrace progeny and these were the focus of the work of

Yang et al. [8] (Table 1). Seven additional traits were scored in teosinte alone and analyzed in

this paper (S3 Table). For GBS, a total of 34,899 SNPs was scored for teosinte and 40,255 SNPs

for maize landrace. Yang et al. [8] estimated a variety of quantitative genetic parameters for

these populations including: additive genetic variance, dominance genetic variance, pheno-

typic variance, genetic-by-environmental variance, selection intensity, genetic correlation

matrix, and genetic variance-covariance matrix. All phenotype and genotype data from Yang

et al. [8] are available at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1820997116/-/

DCSupplemental and https://doi.org/10.6084/m9.figshare.7655588.

In this paper, we added to this dataset by determining the WGS for all 125 teosinte and

landrace parent plants. We extracted a total of 18 million and 21 million SNPs from the WGS

data for teosinte and maize landrace, respectively, after removing sites with missing rate above

10% and heterozygosity rate above 60% in the parents. Using skim-WGS of selected progeny

of both teosinte and landrace, we phased the SNPs in the 49 teosinte parents and 40 landrace

parents that contributed to the 4455 teosinte and 4398 landrace progenies. Yang et al. [8]

reported the recombination breakpoints on all chromosomes for all progeny as defined by the

GBS SNPs. Using these breakpoint locations and phased WGS SNPs of the parents, we were

able to project the WGS SNPs of the parents onto all progeny. This process resulted in a total

of 32.5 million SNPs with 17.8 million segregating SNPs in teosinte and 18.9 million segregat-

ing SNPs in maize landrace, of which 4.2 million are shared in both populations. These SNPs

are available via Cyverse Data Commons: https://doi.org/10.25739/sa4n-b482. Details on how

this was accomplished are presented in S1 Appendix.

Genome-Wide Association Study (GWAS)

GWAS was performed by a scan of the genome using stepwise regression analysis. We first fit a

general linear model (GLM) to reduce SNP number. The model included field variables, the

inbreeding coefficient, and the first 50 principal components (PCs) based on the GBS SNPs as

covariates. We then selected the SNP with the lowest P value within each 200-SNP bin along each

chromosome, and used the reduced set of SNPs for stepwise regression to map quantitative trait

loci (QTLs) for each trait by fitting an additive plus dominance model with the same covariates as

used for GLM for stepwise regression. Both GLM and stepwise regression were implemented

with TASSEL5 software [70]. Details on the scanning model are presented in S1 Appendix.
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Variance Component Analysis (VCA)

To estimate the proportion of trait additive genetic variation associated with different classes

of SNPs, we used a procedure to estimate variance components associated with different sub-

sets of the SNPs [66, 71–73]. In brief, variance component analysis (VCA) was done by (1)

classifying SNPs into subsets based on a hypothesis of interest, (2) generating kinship matrices

for each subset using TASSEL5 [70], and (3) fitting these kinship matrices along with pheno-

typic data into LDAK5 (http://dougspeed.com/ldak/), using a generalized restricted maximum

likelihood (REML) solver to partition the genetic variance (heritability, h2) into the proportion

accounted for by each SNP subset [72, 73]. Details on how we performed VCA in this study

are presented in S1 Appendix.
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