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ABSTRACT Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as
has been exemplified in maize using rapid cycling recombination of biparental populations. However, no
results of GS applied to maize multi-parental populations have been reported so far. This study is the first to
show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-
parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-
pollinated once, to form the cycle 0 (C0) training population. A total of 1000 ear-to-row C0 families was
genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four
optimal locations in Mexico to form the training population. Individuals from families with the best plant types,
maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C1). Predictions of the geno-
typed individuals forming cycle C1 were made, and the best predicted grain yielders were selected as parents
of C2; this was repeated for more cycles (C2, C3, and C4), thereby achieving two cycles per year. Multi-
environment trials of individuals from populations C0, C1, C2, C3, and C4, together with four benchmark checks
were evaluated at two locations in Mexico. Results indicated that realized grain yield from C1 to C4 reached
0.225 ton ha21 per cycle, which is equivalent to 0.100 ton ha21 yr21 over a 4.5-yr breeding period from the
initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C0), genetic diversity
narrowed only slightly during the last GS cycles (C3 and C4). Results indicate that, in tropical maize multi-
parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving
genetic diversity and achieving high genetic gains in a short period of time.
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In the last 20 yr, marker-assisted selection has been widely used in
plant breeding where a few markers significantly associated with the
phenotypic trait are employed to predict the genetic value of the can-
didates for selection (Bernardo 2008, 2016). On the other hand, geno-

mic-assisted breeding (genomic selection, GS) incorporates all available
marker information simultaneously into a model to predict the genetic
value of the candidates for selection (Meuwissen et al. 2001). In plants, a
computer simulation study (Bernardo and Yu 2007) showed that better
prediction accuracy of breeding and genetic values was achieved by
incorporating all markers, as compared to using a subset of markers
significantly associated with QTL. This result was verified by Massman
et al. (2013), who used a biparental temperatemaize population derived
from a cross between two distinct heterotic groups (B73 andMo17); the
testcrosses were evaluated under well-watered conditions, and the pop-
ulation advanced using rapid cycling GS (RCGS where all markers are
used for prediction) and marker-assisted recurrent selection (MARS
where only significant markers are used for prediction). Massman et al.
(2013) reported that RCGS had a superior response for stover yield, as
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well as stover and grain yield indices that were 14–50% higher than
those of MARS.

In tropical maize, Beyene et al. (2015) evaluated realized genetic
gains in grain yield fromRCGS in eight biparental maize populations in
drought stress environments. The authors found that the average gain
from RCGS per cycle across eight populations was 0.086 ton ha21 and
that hybrids derived from cycle 3 produced 7.3% (0.176 ton ha21)
higher grain yield than those developed through the conventional ped-
igree breeding method. RCGS in biparental populations offered the
advantage of significant time efficiency over conventional breeding
methods, as up to three cycles of RCGS can be conducted within a
year. Interestingly, Beyene et al. (2015) pointed out that the average
genetic gain per year in tropical maize grain yield using RCGSwas three
times higher than that achieved by using conventional pedigree-based
phenotypic selection in drought stress environments. Furthermore,
Vivek et al. (2016) recently reported a study on realized genetic gains
in grain yield using two biparental populations generated by crossing
two elite Asianmaize inbred lines with anAfrican drought tolerant line.
Cycle 1 (C1) was formed by recombining the top 10% of the F2:3
families. Cycle 2 (C2) was derived using two different methods: (1)
phenotypic selection (C2-PS); and (2) GS (C2-GS). Results showed
that C2-GS top-crosses produced 4–43% higher grain yield than
C2-PS top-crosses.

For RCGS within biparental populations, prediction accuracy is
achieved thanks to high linkage disequilibrium (LD), no pedigree,
and no family substructure (Crossa et al. 2014; Zhang et al. 2015).
However, predictions across biparental populations will be poor if un-
related biparental populations with different allelic diversity are used as
the training population. Furthermore, Jannink et al. (2010) outlined
some of the disadvantages of using GS applications in biparental pop-
ulations: (1) separate model training is required for each biparental
cross; GS should be applied to the entire population; and (2) the first
generation of progeny from a cross needs to be phenotyped and can-
didates cannot be selected on the basis of prior information, a practice
that slows down the breeding cycle. Biparental populations have also
been widely used for detecting and mapping QTL. However, QTL
mapping power and resolution might be comparatively reduced in bi-
parental mapping populations as the number of segregating causal loci
is very low, because large blocks of parental chromosomes are preserved
(Cavanagh et al. 2008; Thepot et al. 2015; Lehermeier et al. 2014). The
problem of limited allelic diversity in one genetic background which
occurs in biparental populations can be overcome by the use of multi-
parental populations (MPP) with greater allelic diversity and from
different genetic backgrounds (Verhoeven et al. 2006), along with in-
creased polymorphism and recombination as compared to biparental
populations (Ahfock et al. 2014).

Different MPPs have been constructed with the aim of increasing
precision in fine mapping. For example, researchers have combined
different biparental populations using factorial crosses, partial or com-
plete diallels (Rebai and Goffinet 1993), or circular crosses (Cavanagh
et al. 2008; Huang et al. 2012). The designs and analyses of these types
of populations have been extended to genomic-enabled studies using
different schemes and designs for efficient training, and for testing
MPPs in different species.

Multi-parental populations are useful for mapping extensive num-
bers of loci. Thepot et al. (2015) used a multi-parental mapping
population created after 12 generations of recombination among
60 founder wheat lines. The 12 generations of recombination broke
up the LD and the existing population structure of the original pop-
ulations. This approach to fine mapping helped to identify 26 genomic
regions, six of which carried flowering QTL, and allowed detecting loci

under selection and associationmapping. In a recent article, Hoffstetter
et al. (2016) used 47 bi-parental crosses, including 23 parental wheat
lines as a training set, and 17 half-sib lines as a validation set, with some
of the lines from the training set included in the testing set. Prediction
accuracy using subsets of the training population to predict the valida-
tion sets ranged from 0 to 0.85. In maize, Lehermeier et al. (2014)
evaluated prediction accuracy in 21 biparental doubled haploid popu-
lations, including 10 dent kernel type related populations, and 11 flint
kernel type related populations. The authors found that prediction
combining several half-sibs gave similar or higher prediction accuracy
than predictions within biparental populations.

However, several theoretical complexities and challenges arise when
attempting to performGS inMPP. Plant breeders usuallyworkwith sets
of full-sib families generated from crosses of inbred parents that vary in
size so that extensiveLDexistswithin each family; however, different LD
patternsmust exist across families. Therefore, because, in a typicalMPP,
thebreeder is facedwithLDacrossa large setof families, the levelofLDas
well as the marker density are important factors to be considered when
applying GS toMPP. Zhong et al. (2009) using marker data on 42 two-
row spring barley inbred lines simulated MPP with high and low LD
populations generated from multiple inbred crosses. The authors sug-
gested a trade-off between the model-method’s ability to capture LD
between marker and QTL vs. its ability to exploit marker-based re-
latedness of individuals. Genomic relationship information (Best Lin-
ear Unbiased Predictor, GBLUP) ismore valuable than LD information
given by models that use marker effects. However, when markers were
in strong LD with QTL with large effects, models based on marker
effects were better predictors than models based on the genomic re-
lationship between individuals.

The reliability of GS is greatly influenced by the number of pheno-
types; therefore, combining data sets from MPP should increase the
reliability of GS by making it more efficient and attractive for use in
breeding.However, whencombiningpopulations, allele frequencies, LD
and segregating haplotypes are different in different populations. Thus,
when the marker effects are different between the different combined
populations, this can reduce the reliability of GS. de Roos et al. (2009)
studied this problem by combining two simulated cattle populations
that diverged for certain number of generations; the authors found that
increased genomic accuracy is achieved when all populations are com-
bined in one training population but increasing marker density is re-
quired when the diversity of the combined population increases.

Despite the above theoretical andsimulationresults,whichshowthat
genomic-enabled prediction accuracy of MPPs is higher than the
accuracy achieved within a single population, studies implement-
ing RCGS inMPPs have not been reported. The research presented
in this paper was initially conceived in 2009 and started in 2010. It
included an initial MPP made up of 18 elite tropical maize lines
intercrossed twice and self-pollinated once to form the cycle 0 (C0)
training population. A total of 1000 ear-to-row C0 families were
genotyped with dense GBS markers, and their testcrosses were
phenotyped at four locations in Mexico to develop genomic pre-
diction models. One cycle of phenotypic selection (C0–C1) and
three cycles of RCGS (C1–C4) were carried out. The main objec-
tives of this study were: (1) to report the realized genetic gains of
four cycles (C1, C2, C3, and C4), plus the original training pop-
ulation (C0) in multi-environmental field trials of RCGS-assisted
breeding evaluated together with four benchmark checks in two
Mexican environments (locations), and (2) to investigate the ge-
netic diversity of the families within each RCGS selection cycle to
assess the level of genetic diversity after three cycles of rapid
cycling GS.
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MATERIALS AND METHODS

Developing the training population from 18 tropical
maize inbred lines
The RCGS experiment was designed in 2009 as part of the MasAgro
project funded by Mexico’s Secretariat of Agriculture, Livestock, Rural
Development, Fisheries and Food (SAGARPA, its acronym in Spanish)
through the Sustainable Modernization of Traditional Agriculture pro-
gram (MasAgro; http://masagro.mx).

The steps in the breeding scheme used for RCGS are shown in
Figure 1. In total, 18 CIMMYT tropical maize inbred lines (CML247,
CML264, CML448, CML494, CML498, CML531, CLRCW72, CLRCW75,
CLRCW76,CLRCW93,CLRCW100,CLRCW260,CLWN201,CLWN228,
CLWN229, CLWN247, CLG2312, and CLSPLW04), widely used in
lowland tropical breeding environments, were crossed as parents to
form the training population through twice intermated pollination
and one self-pollination; the parents were selected based on their gen-
eral combining ability for grain yield and per se, visual evaluation in-
formation for major stress tolerance and disease resistance in lowland
tropical breeding environments. All 18 original parents tended to group
in heterotic pattern group “B” (flint type kernel).

In the 2010B season, half-diallel crosses were made between the
18 original parents to generate all possible F1 progenies (Figure 1). In the
2011A season, all F1 were planted ear-to-row and intermated to form
the S1 population; then, all the F1 were separated into two groups of
equal size. Bulk pollen from the first group was used to pollinate all
plants of the other group and vice versa; three ears were harvested from
each F1 family, and equal amounts of seed from each selected F1 ear
were bulked to form the subsequent generation for planting. In the
2011B season, 4800 S1 individuals were planted and self-pollinated
and advanced to S2. The best 1000 S2 ears were selected, and planted
ear-to-row in the 2012A season (Table 1). A single-cross tester

(CML495/CML549) from the complementary heterotic group (dent
type kernel) was used to generate testcrosses. All pollination activities
were conducted at CIMMYT’s experiment station in Agua Fria, Puebla.

The training population (C0) for developing genomic prediction
models was formed with the best 1000 selected S2s. Testcrosses of all
1000 selected S2 were planted using a partial replicated design with 25%
of replicated genotypes at four optimal Mexican locations. Phenotypic
data were collected at all locations for.10 agronomic traits, including
grain yield at 12.5% moisture content (GY), anthesis date (AD), silking
date (SD), plant height (PH), ear height (EH), and moisture content
(MOI). For each S2 family, DNA was extracted by bulking equal
amounts of leaf tissue from 15 individual plants. Genotyping-by-
sequencing was performed at Cornell University Biotechnology Re-
source Center as described by Wu et al. (2016), where 955,690 SNPs
were generated for each DNA sample. In the training population, the
genomic predictionmodel was developed by using only 331,740 filtered
SNPs with minor allele frequency (.0.05), and where the missing data
rate was ,10%.

Cycle 0 (C0) phenotypic selection and formation of
cycle 1 (C1)
In C0, phenotypic selection was conducted by ranking the grain yield of
the 1000 S2 testcrosses. The best 50 respective S2 families were selected
and planted ear-to-row, 25 plants per family (Table 1). Cycle 1 (C1) was
formed by intermating the 50 selected S2 families. The 50 families were
divided into two equal groups, and bulk pollen from the first group was
used to pollinate all plants in the other group and vice versa. Based on
visual evaluation of flowering time, plant type, plant/ear height, well-
filled ears, and reaction to naturally occurring major diseases, along with
among-family and within-family selection, 157 ears (1–6 ears from each
selected family) were harvested and shelled individually to form C1.

Figure 1 Breeding scheme used in the MPPs reported in this study.
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Rapid cycling recombination of GS cycle 1 (C1), cycle
2 (C2), and cycle 3 (C3)
In C1, 157 selected ears (Table 1) were planted ear-to-row, 25 plants
per family. DNA was extracted from the bulk tissue and shipped to
Cornell University Biotechnology Resource Center for genotyping-
by-sequencing. The Genomic Best Linear Unbiased Predictor
(GBLUP) model (VanRaden 2007, 2008) implemented in the BGLR
package was used for genomic prediction. Genomic estimated
breeding values were calculated for all 157 C1 families; among-family
selection was implemented based on genomic estimated breeding value
information. The top 25 families were selected and intermated to form
the C2 population. The 25 families selected were divided into two
equal groups. Bulk pollen from one group was used to pollinate all
plants in the other group and vice versa. Within-family selection was
implemented based on visual evaluation of flowering time, plant type,
plant/ear height, well-filled ears, and reaction to naturally occurring
major diseases. A total of 91 ears were harvested, and shelled indi-
vidually to form C2. In C2 and C3, the recombination protocol was
repeated. The number of families and individual plants planted per
cycle; number of families selected for next cycle recombination; num-
ber of ears harvested per cycle; and selection intensity information are
listed in Table 1. After C3 recombination, 45 ears were harvested and
shelled individually to form C4; within-family selection was imple-
mented based on visual evaluation of agronomic traits. Families from
Cycle 4 (C4) were not genotyped, as this was the last rapid cycling
recombination.

Phenotypic evaluation of the selection cycles for
assessing genetic gains—benchmark checks and
experimental designs in multi-environment trials
A total of 233 testcrosses was tested in the field to estimate the realized
genetic gains; these entries belong to different groups. One group of
entries (48) represents selection cycle C0, which is a subset of the best
50 families selected from the training population. Another group of
entries represents RCGS cycles C1 (47 entries), C2 (48 entries), C3

(43 entries), and C4 (43 entries), and the last group of entries comprises
the four benchmark checks (two local checks, one commercial check,
and one experimental baseline check formed by testcrossing all 18 orig-
inal parents with a single-cross tester (CML495/CML549). All the en-
tries were crossed with a single-cross tester (CML495/CML549). Their
testcrosses were planted at two locations in Mexico (Agua Fria and
Tlaltizapan) in a modified split-plot design where the selection cycles
were the main plots and the entries within each selection cycle were the
subplots. The experimental design within each selection cycle (main
plot) was an alpha-lattice design with two replications per location. The
four benchmark checks were repeated in each subplot and planted
together with the entries belonging to the different GS cycle; for exam-
ple, the four checks were planted in the two replicates of the subplot
where entries from cycle C0 were planted.

Statistical analyses
Phenotypic data were collected at the two locations for the main
agronomic traits including GY, AD, SD, PH, EH, and MOI. A linear
mixed model was fitted to the data considering the incomplete block
within replicate as random effects, and locations, cycles (main plot),
entry within cycle (subplot), cycle · location interaction, and entry
within cycle · location interactions as fixed effects. Random errors
are assumed to be identically and independently normally distributed
with mean zero and homogeneous variance. ANOVA for GY were
performed including the evaluated entries from the selection cycles
and the checks. Genetic gain response was assessed by regressing mean
GY values on the selection cycle means (C0, C1, C2, C3, and C4) within
each location and combined across both locations. ANOVA for AD,
SD, PH, EH, andMOI were performed for each location and combined
across both locations.

SNP genotyping
For each cycle, bulk DNA of each planted family was sent to the
Biotechnology Resource Center of Cornell University for genotyping-
by-sequencing. The number of DNA samples used for genotyping were

n Table 1 Number of families and individual plants sown,
selected, and advanced in each breeding cycle and among-family,
within-family, and total selection intensity

Cycle

C0 C1 C2 C3 C4

No. of families sown 1000 157 91 44 –
No. of families selected 50 25 18 22 –
No. of plants sown per

family
25 25 25 25 –

No. of ears selected 157 91 44 22 45
Among-family selection

intensity
5% 16% 20% 50% –

Within-family selection
intensity

12.60% 2.30% 1.90% 2.00% –

Total selection intensity 0.60% 0.40% 0.40% 1.00% –

n Table 2 Mean of GY (ton ha21) for each genomic cycle C0, C1, C2, C3, and C4, broad-sense heritability (H2), and mean of the four testers
at each location (Agua Fria and Tlaltizapan), and combined across the two locations

Cycle
Agua Fria Tlaltizapan Combined

Entry H2 Checks Entry H2 Checks GY H2 Checks

C0 6.65 0.27 5.47 10.40 0.65 8.08 8.52 0.42 6.77
C1 6.49 0.06 5.73 10.29 0.59 9.32 8.40 0.63 7.52
C2 7.02 0.26 6.02 10.20 0.46 9.30 8.62 0.47 7.52
C3 6.88 0.38 5.64 10.95 0.59 9.31 8.92 0.67 7.52
C4 7.13 0.21 5.70 10.96 0.25 9.30 9.05 0.43 7.61
LSD0.05 (C0–C4) 0.402 — — 0.412 — 0.252 —

LSD0.05 (C1–C4) 0.408 — — 0.404 – 0.191 —

Average gain per cycle (C0–C4) 0.131 — — 0.177 — 0.158 —

Average gain per cycle (C1–C4) 0.171 — — 0.276 — 0.225 —

The average genetic gain in GY across cycles was estimated for each location and across both locations including all selection cycles (C0–C4), and including only the
genomic selection cycles (C1–C4). Least significant differences (LSD) test at the 0.05 probability level including all selection cycles (C0–C4) and only the genomic
selection cycles (C1–C4). The highest value is indicated in boldface.
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1000, 157, 91 and 44 in C0, C1, C2 andC3, respectively. Families fromC4

were not genotyped. Genotyping-by-sequencing, SNP calling, imputa-
tion and filtering were performed as described by Wu et al. (2016).
Briefly, genomic DNAwas digested with the restriction enzymeApeKI.
GBS libraries were constructed in 96-plex and sequenced on Illumina

HiSeq2000 (Elshire et al. 2011). SNP calling was performed using the
TASSELGBS Pipeline, and a GBS 2.7 TOPM (tags on physical map) file
was used to anchor reads to the Maize B73 RefGen_v2 reference
genome (Glaubitz et al. 2014). Imputation was carried out with the
FILLINmethod in TASSEL 5.0 (Swarts et al. 2014), which anonymized

n Table 3 Means of entry and checks for traits anthesis days (AD, days), silking days (SD, days), plant height (PH, centimeter), ear height
(EH, centimeter), and moisture content (MOI, %) in each cycle across the two locations

Cycle
AD SD PH EH MOI

Entry Check Entry Check Entry Check Entry Check Entry Check

C0 56.54 56.58 57.22 57.62 250.86 249.86 130.71 136.84 17.06 17.64
C1 56.54 57.02 57.35 58.11 250.23 247.39 129.55 131.77 18.61 19.45
C2 56.60 56.82 57.05 57.71 254.22 251.15 130.86 135.54 18.51 19.03
C3 56.11 56.27 56.80 57.31 258.11 252.05 133.00 134.18 19.42 19.88
C4 56.49 56.51 57.26 57.75 260.17 255.33 136.80 137.03 17.35 17.40
LSD0.05 (C0–C4) 0.210 — 0.233 — 2.882 — 2.408 — 0.254 —

LSD0.05 (C1–C4) 0.167 — 0.173 — 2.205 — 2.306 — 0.230 —

Least significant differences at the 0.05 probability level including all cycles (LSD0.05 (C0–C4)) and including only the genomic selection cycle (LSD0.05 (C1–C4)).

Figure 2 Distribution of parents, cycle C0 entries (A) and the selected parents, and cycle C1 entries (B) and the selected parents based on rapid
cycling genomic selection-assisted recombination.
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GBS 2.7 haplotypes made from 8000-site windows. In total, 955,690
SNPs were generated for each sample, filtering was performed
with minor allele frequency (.0.05) and the missing data rate
was ,10%.

Assessing the genetic diversity of the selection cycles
Based on genomic data, we computed two genetic diversity indices
between the families of the different selection cycles as well as the
18parents.We calculated the ShannonDiversity Index of the sample for
each selection cycle as 1

A

PA
a¼1p̂alnðp̂aÞ;where p̂a is the frequency of the

major allele in the ath marker over the entire sample, and A is the total
number of markers. The expected proportion of heterozygous loci per
individual was computed as themean of heterozygosity for eachmarker
as 0# 1

L

PL
l¼1ð12

Pni
a¼1p̂

2
laÞ# 1, where p̂la is the frequency of the

major allele in the ath marker of the lth individual, and L is the number
of individuals.

Multidimensional scaling (MDS) was performed with the TASSEL
software (http://www.maizegenetics.net/tassel) to assess the genetic
similarity of all the materials in each selection cycle.

Data availability
Thephenotypicandgenotypicdata for the trainingpopulation(cycleC0)
evaluated in four sites, the phenotypic and genotypic data for the eval-
uation of the entries from the different selection cycles (C0, C1, C2, C3,
and C4), as well as a brief GUIDE can be found in the link http://hdl.
handle.net/11529/10927. A marker information file and characteristics
of the genetic materials are also included in the link.

RESULTS

Heritability and prediction accuracy of GY in the
training population
The combined GY heritability across both locations was 0.34, while GY
heritability at individual locations was 0.48, and 0.19 in Agua Fria and
Tlaltizapan, respectively. Low-to-intermediate GY heritability was ob-
served in the individual location analysis and combined analysis,mainly
because GY is a complex trait. Tomimic future prediction problems we
will face, we implemented a fivefold random cross-validation with
100 replicates using entries in C0 (training population) for GY; the
mean correlation between the predicted and observed values was 0.55.

Realized genetic gains from rapid cycling recombination
of GS for grain yield
A total of five groups of entries from C0, C1, C2, C3, and C4 plus four
checks were used for field evaluation at two Mexican locations (Agua
Fria and Tlaltizapan). Mean grain yield for each cycle and average gains
per cycle are shown in Table 2. The Tlaltizapan location had the highest
mean yield, with C4 reaching 10.96 ton ha21. At both individual lo-
cations, the average performance across all C4 entries surpassed the
grain yield performance of the other cycles; average grain yield perfor-
mance across all C4 entries was 7.13 ton ha21, and 10.96 ton ha21

forAgua Fria andTlaltizapan, respectively. Also, the combined analyses
of the two locations showed an increase in mean grain yield in C4 of
9.05 ton ha21 over that achieved in C3 (8.92 ton ha21) and over the
other GS cycles.

Figure 3 Distribution of parents, cycle C2 entries (A), cycle C3 entries (B) and the selected parents based on rapid cycling genomic selection-
assisted recombination.
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For each location and combined, the entries representing the first
selection cycle (C1) had lower GY than entries representing the base
selection cycle (C0); this was due to the fact that the parents of the C1

population (Table 1) were not selected based on the grain yield perfor-
mance of the testcrosses per se; instead, among- and within-family
selection was conducted based on visual evaluation for flowering time,
plant type, plant/ear height, well-filled ears, and reaction to naturally
occurring major diseases. The other important reason is that the best
50 selected families were used to represent selection cycle C0 in the
genetic gain evaluation study (rather than the random selected fami-
lies). In C3, GY substantially increased in TL and combined across two
locations with respect to previous selection cycles. For analyses in Agua
Fria location, GY declined slightly to 6.88 ton ha21 for C3 (Table 2).
However, in the subsequent genomic selection cycles, the increases in
realized genetic gains are clear for each location and combined across
locations.

All selection cycles had higher average grain yield than the corre-
sponding mean of the checks for individual locations and combined.
Concerningbroad-sense heritability, therewas a decline in cyclesC1 and
C4 as compared to the base cycle (C0) in Agua Fria and Tlaltizapan;
however, the opposite occurred when combining cycles C1 and C3 in
both locations as compared to the heritability in the base cycle (C0). In
the combined analyses across both locations, broad-sense heritability
(H2) showed no decrease. In general, results showed that at each loca-
tion and combined, while there was a decrease in GY from C0 to C1

there were also important increases in realized genetic gains for trait GY
at the two locations from C2 to C3 and from C3 to C4. The mean grain
yield of the benchmark checks varied slightly for each cycle at Agua Fria
but stayed fairly constant at Tlaltizapan and combined locations for all

selection cycles. Mean performance of the checks in selection cycle C0

was consistently lower than the mean performance in the other selec-
tion cycles.

The average gains per cycle for each location and combined across
the two locations ranged from 0.131 ton ha21 to 0.177 ton ha21

when considering all cycles (C0–C4), and from 0.171 ton ha21 to
0.276 ton ha21 when considering only rapid cycling GS (C1–C4).
For the combined location analyses, the realized genetic gains were
0.158 ton ha21 and 0.225 ton ha21 for cycles (C0–C4) and cycles
(C1–C4), respectively. The realized genetic gains due to RCGS were
highest in C4 at the two locations and combined across them.

Changes in the mean for unselected flowering,
moisture, and height traits
The effects of genomic selection on unselected flowering, moisture and
height traits are shown in Table 3. On average, anthesis and silking days
of the entries representing C4 did not increase with respect to their
averages in early GS cycles (C0, C1, C2, and C3). They ranged from 56 d
for anthesis and 57 d for silking for all genomic selection cycles, and
showed good general synchrony between both flowering times. How-
ever, GS produced taller plants and ear insertions during cycles C3 and
C4 than during cycles C1 and C2. Grain moisture content did not seem
to have been greatly affected after the three cycles of RCGS.

Theplantandearheights for the two latestGScycleswere�6–10 cm
higher than the plant and ear heights of the maize plants for the two
earlier GS cycles (Table 3). The phenotypic variance (data not shown)
of the entries for each GS cycle varied during the latest cycles (C3 and
C4), and tended to decline with respect to the early cycles. Similarly,
trends in broad-sense heritability are smaller in the last cycle (C4) than
in early cycles (C0 and C1). The mean of the entries within each selec-
tion cycle, and the mean of the benchmark checks did not differ much
for the different traits. For example, the check had �56 d to anthesis
and 57 d to silking. In general, the checks had smaller plant height,
taller ear height and similar grain moisture than the entries in the
selection cycle.

The phenotypic correlation between the different traits and grain
yield changed from different selection cycles (data not shown). Results
indicated positive correlations between grain yield and days to silk
ranging from 0.3 to 0.5 for the different selection cycles. Negligible and
negative correlationsbetweengrainyieldandplantheight, anthesisdays,
and moisture content were found.

Genetic diversity of the rapid cycle recombination of GS
The diversity structure pattern including the 18 parents, the C0 families
and the individuals selected as parents of C1 is displayed in Figure 2A;
the selected individuals are well spread along the three dimensions,
and should capture most of the diversity in the C0 families. The
original parents, the C1 families and the selected individuals (that
form the parents of C2 selection based on genomic prediction) are
depicted in Figure 2B. The C1 families are located between dimen-
sions 1 and 3, close to four of the original parents located in this
region of the figure.

Figure 4 Plot of the two dimensions of the multi-dimensional scaling
analysis including all samples of the original parents and families in
each cycle.

n Table 4 The Shannon Diversity Index, heterozygosity, and number of SNPS of the 18 original parents, the number of families in cycles
C0–C3 (in parentheses), and the selected parents in C0–C3, and including all the entries

Parents C0 (1000) C0 (50) C1 (157) C1 (25) C2 (91) C2 (18) C3 (44) C3 (22) All Entries

Shannon’s Index 0.0661 0.0728 0.020 0.0776 0.052 0.0765 0.043 0.0588 0.063 0.0740
Heterozygosity 0.1104 0.1226 0.1208 0.1297 0.1250 0.1276 0.1228 0.0973 0.0923 0.1245
Number of SNP markers 950,248 952,825 943,344 951,390 947868 953,199 953,453 954,058 954,924 954,960

Numbers in parentheses refer to the size of the cycle population and the selected parents to form the subsequent cycle.
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The original 18 parents, the C2 families, and the parents selected to
form the next selection cycle are shown in Figure 3A. The C2 families
and the selected parents are located between dimensions 1 and 3,
clearly heading in the direction of two of the original parents located
in this region of the three-dimensional figure. Finally, Figure 3B in-
cludes the original 18 parents, the C3 families and the selected parents
that were intermated in RCGS to form C4. Clearly, the C3 families and
the selected parents that form C4 are concentrated around the two
original parents located in the upper region of the figure, between
dimensions 1 and 3.However, a direct comparison between the genetic
diversity of different populations (C0–C4) may be confounded by the
differences in population size, and also by the different levels of in-
breeding in the different selection cycles.

Figure 4 depicts the two plot dimensions of the multidimensional
scaling with the 18 parents and all families in selection cycles C0–C4.
The C3 families and the selected parents that form C4 are located to-
ward the upper left quadrant of the biplot in the same direction as one
of the original parents.

Concerning the genetic diversity of the differentC0–C4 entries, Table
4 shows the values of Shannon’s Diversity Index, the heterozygosity and
the number of SNPs for the 18 parents, cycles C0–C4, the selected
parents from C0 to C4, along with all the entries. Results of Shannon’s

Diversity Index and the heterozygosity for cycles C0–C4, along with the
selected parents from C0 to C4 and all other entries, are displayed in the
barplots in Figure 5. Genetic diversity did not decline in the initial
cycles and the trends in Shannon’s Diversity Index and heterozygosity
even showed a slight increase in cycles C1 and C2. However, there was a
decrease in the three diversity measurements for the population repre-
sented by the C3 entries, as well as for the parents selected to form C4.
Note that entries from C4 were not included because they were not
genotyped.

Changes in the status of marker frequency
For each SNPmarker, wemeasured the change in the allele frequency of
the 18 parents’ original parents that formed C0, and the allele frequency
of the C3 and C4 entries. Initially, allele frequency was calculated for the
18 parents, and for the entries of cycles C3 and C4; SNP markers with
allele frequencies between 0.05 and 0.95 were considered polymorphic
markers, whereas markers with allele frequencies,0.05 or.0.95 were
considered monomorphic markers. Using these criteria, we found that
from a total of 1120 SNPmarkers (0.117% of all markers) that changed
their polymorphic/monomorphic status, 123markers swapped thema-
jor allele frequency, 968 markers became monomorphic in C3–C4 al-
though they were polymorphic in the 18 parents and C0, and only
29 markers were polymorphic in cycles C3 and C4, although they were
monomorphic in the 18 parents and cycle C0 (Table 5). Chromo-
somes 1–4 had a low percent change in allele frequency (0.080–
0.097%), whereas the rates of change in chromosomes 5 and 6 were
0.177, and 0.139%, respectively. Chromosomes 7–10 had a percent
change in allele frequency ranging from 0.118 to 0.131%. Almost two
thirds of the markers (614,663 markers, 64.37%) changed their allele
frequencies without becoming monomorphic and 33.99% (324,575) of
the markers changed their allele frequency by ,15%.

Markers with changes in their frequency were clustered accord-
ing to the physical distance in the map; SNPs with a physical
distance ,1000 bp were considered a cluster (or haplotype). A total
of 88 clusters (haplotypes) of different sizes were found with three or
more SNPs that changed their frequency. The distribution and size
of the clusters as well the type of change are shown in Table 6. For
example, chromosome 1 had one cluster with four markers that
changed their frequency; this indicated that there were at most
4000 bp units where these four markers were located. Most of the
changes correspond to SNP markers that became monomorphic in
cycles C3 and C4 although they were polymorphic in the 18 parents
and cycle C0. Most of the clusters were found on chromosome 5
(Table 6).

Figure 5 Bar-plot of the Shannon Diversity Index (blue) and hetero-
zygosity (brown and light pink) for the original parents, individuals from
cycles C0–C3 and the selected entries in light blue and light pink.

n Table 5 Number of SNP markers with allele swaps, number of polymorphic markers that became monomorphic and number of markers
that were monomorphic and became polymorphic from [parents-C0] to [C3–C4]

Chromosome
Number of
Allele Swaps

Number of Polymorphic
to Monomorphic

Number of Monomorphic
to Polymorphic

Total SNPs with Changes Total Number
of SNPsN %

1 12 124 7 143 0.096 148,745
2 12 105 1 118 0.102 115,152
3 7 97 1 105 0.097 108,195
4 11 64 1 76 0.080 94,716
5 20 166 9 195 0.177 110,303
6 12 91 3 106 0.139 76,450
7 7 90 2 99 0.123 80,514
8 10 86 96 0.118 81,427
9 21 71 2 94 0.130 72,355

10 11 74 3 88 0.131 67,103
Total 123 968 29 1120 0.117 954,960
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Figure 6 depicts the location of the clusters for each chromosome in
the genome. For example, chromosome 1 has one cluster with four
markers that changed their frequency (green color), one cluster of four
markers that changed from monomorphic in the 18 parents and cycle
C0 to polymorphic in cycles C3 and C4 (blue color), and three clusters
with three markers, four clusters with four markers, and two clusters
with six markers that changed from polymorphic in the 18 parents and
cycle C0 to monomorphic in cycles C3 and C4 (black color). As shown
in Table 6, most of the clusters with changes in their allele frequency
occurred in chromosome 5.

DISCUSSION
Previous studies on temperate and tropical maize showed realized gains
of RCGS in biparental populations (Massman et al. 2013; Beyene et al.
2015; Vivek et al. 2016). In this study, our results showed realized gains
of RCGS in a multi-parental tropical maize population that originated
from crosses of 18 CIMMYT elite tropical maize lines. From a practical
breeding perspective, multi-parental populations might not be an at-
tractive option because the mean of 18 parental lines might be lower
than the mean of the best few lines that could be used in biparental
crosses; however, as diversity becomes an important issue in GS, multi-
parental populations offer the opportunity to maintain diversity, while
still achieving rapid cycles with high realized grain yield genetic gains
achieved in a shorter period of time, as found in this study. As for the
decrease in genetic diversity, this is not ofmuch concern in a short-term
selection (four to five cycles), especially if the new developed lines from
C4 are crossed with other lines for further breeding.

Trends in the realized genetic gains of multi-parental
populations for grain yield
The genetic gains per unit of time are given by the breeders’ equation,
which is Gain = (i·r·h)/I, where i is the selection intensity, r is the
selection accuracy, h is the square root of narrow-sense heritability, and
I is the time (in years) it takes to complete a selection cycle. In this
study, the gains in GY in different selection cycles were not consistent,
decreasing slightly fromC0 toC2, while increasing significantly fromC2

to C3, and from C3 to C4. As for analyses combining the two sites, the
gains in grain yield were 6.2 and 7.7% from C0 to C4 and from C1 to C4,
respectively. The combined realized genetic gains reached 0.158 ton
ha21 per cycle for C0–C4, (Figure 7A) and 0.225 ton ha21 per cycle
for RCGS C1–C4 (Figure 7B).

The lower GY observed in C1 compared to C0 is explained because
the best GY entries selected from C0 as parents of C1 were further
intermated and selected based on flowering, plant, and ear height,

etc. This also helped to broaden and maintain the genetic diversity
observed in C1 and C2, which later declined in C3. As already men-
tioned, the other reason of lower GY observed in C1 compared to C0 is
that the best 50 selected families (not the random selected families)
were used to represent selection cycle C0 in the genetic gain evaluation
study. TheGYmean of the best 50 selected families is much higher than
that value of the 50 random selected families.

In termsof thepredictionmodels used topredict the genetic values of
the entries to be selected in each genomic cycle, we used the direct
genotyping-by-sequencing marker as biallelic. Since a multi-parental
(not a biparental) population was used, haplotype rather than biallelic
marker could have been used in order to attempt to capture the whole
allelic diversity.However, the problemonhow todefine the lengthof the
haplotype segment in each chromosome could impose a major draw-
back for using this approach; different haplotypes methods exist but
noneof themseems togiveclear superiority in termsofgenomic-enabled
prediction accuracy.

Realized genetic gains per unit of time
To compute the realized genetic gains per year (ton ha21 yr21), it is
necessary to account for the number of cycles per year (two cycles per
year in this study), and also for the time from the initial cross to the last
cycle (4.5 yr from F1 development to harvesting the C4 in this study).

n Table 6 Distribution and size of clusters of SNPs with changes in their polymorphic status by chromosome

Chromosome

Allele Swap Polymorphic to Monomorphic Monomorphic to Polymorphic

Total
Number of SNPs Number of SNPs Number of SNPs

3 4 5 7 3 4 5 6 7 8 9 3 4 5

1 1 3 4 2 1 11
2 1 1 4 1 1 1 9
3 1 1 2
4 2 2 1 1 6
5 2 9 3 2 1 1 1 19
6 1 3 2 1 1 8
7 2 2 1 1 6
8 2 4 2 2 10
9 1 2 1 3 1 8

10 1 4 3 1 9
Total 6 1 1 1 31 21 12 5 4 2 1 1 1 1 88

Figure 6 Genome location of clusters of SNPs with changes in their
polymorphic status.
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Therefore, given that grain yield from C1 (8.40 ton ha21) to C4

(9.05 ton ha21) increased by 7.74%, the average genetic gain of
0.225 ton ha21 per cycle (Table 2) is equivalent to 0.100 ton ha21

yr21 [i.e., (2 · 0.225)/4.5] under optimal conditions.
Masuka et al. (2017a) conducted a review of genetic gain studies that

used conventional pedigree selection on tropical hybrid maize germ-
plasm under optimal conditions in Sub-Saharan Africa, which gave
gains of 0.109 ton ha21 yr21. For tropical open-pollinated maize vari-
eties, realized genetic gains reached 0.109 ton ha21 yr21 in the early
maturity group, and 0.079 ton ha21 yr21 in the intermediate-to-late
group (Masuka et al. 2017b). Therefore, the genetic gains from the RCGS
observed in the MPPs used in this study (0.100 ton ha21 yr21) are at
the same or higher level than those observed in other studies under
phenotypic selection but with a shorter breeding cycle. However, the
0.070 ton ha21 yr21 achieved by Beyene et al. (2015) in bi-parental
populations is not comparable to the results of this study because the
genetic gains from RCGS in biparental populations targeted managed

drought environments (not optimal environments), and the RCGS in
this MPP targeted optimal environments.

In this study, results obtained fromMPPs in optimal environments
reinforce theusefulnessofGS-assisted recombination for achievinghigh
genetic gains inGY.Althoughonly twocyclesperyearwerecompleted in
this study (Beyene et al. 2015, completed three cycles per year in bi-
parental populations), it is still time-efficient when compared to the
1.5 yr per selection cycle required for making testcrosses, phenotyping
testcrosses, and conducting selection and recombination in conven-
tional pedigree breeding.

Trends in genetic diversity under rapid cycling
recombination GS
There are not many reports on the influence of RCGS on genetic
variance in plant breeding. In a simulation study, Jannink et al.
(2010) were the first to caution about the possible decline in genetic
variance due to RCGS. Genetic gains in GS for stem rust in wheat were
reported by Rutkoski et al. (2015); genetic gains in GS were compared

Figure 7 Response to selection
for grain yield from the families
of (A) rapid cycling recombina-
tion genomic selection for cycles
C0, C1, C2, C3, and C4 and of (B)
rapid cycling recombination ge-
nomic selection for cycles C1,
C2, C3, and C4. Mean of the
checks (red), and mean of the
entries (blue).
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with gains in phenotypic selection and no differences were found.
However, GS caused faster decline in genetic variance than phenotypic
selection. Rutkoski et al. (2015) also found significant increases in in-
breeding after one and two cycles of GS as compared with C0; this
increase in inbreeding was significantly greater than the expected value
under random genetic drift for all populations.

The above results seem to be in partial agreement with the
findings of this study. The decrease in genetic diversity measured
by the Shannon Diversity Index and the expected heterozygosity
only occurred in RCGS in C3, whereas, in previous cycles, genetic
diversity was very well maintained. These results may be due to the
fact that C0 selection was initially based on GY, and then a second
selection was conducted based on flowering, maturity, and other
traits after intermating; this may be one of the reasons why the
genetic diversity stayed at the same level as in C0, at least in the
initial recombination cycles.

Changes in the frequency status of markers
Results of this study show that only a few SNPs changed their poly-
morphic status after three cycles of GS. This result indicates thatmarker
interaction (epistasis)mayplayan important role in complex traits (such
as grain yield), in which phenotype is the result of the sum of the small
effects of many genes. Only chromosome 5 showed a total of 19 clus-
ters, with 16 of them havingmarkers that becamemonomorphic (being
polymorphic in their 18 parents and in the C0 training population); all
the other chromosomes showed a small number of clusters with
markers that became monomorphic (from their original polymorphic
status) after cycles of RCGS. It is likely that some of those clusters of
SNP markers with changes in their polymorphic status are related to
less complex traits that were selected during C0 and C1, such as flower-
ing time, and plant and ear height.

Conclusions
Results described in this study are the first report of RCGS in MPPs. A
realized genetic gain of�2% forGYwith two rapid cycles per year saves
time and produces efficient genetic gains overall. The decline in genetic
gains from cycle C0 to C1 is because the aim of selecting parents for C1

was to maintain genetic diversity and the best selected families of cycle
C0 were used as baseline for evaluating genetic gain among cycles. The
realized gain achieved in this study was 0.100 ton ha21 yr21 when
only GS cycles were considered (C1–C4). Another important finding is
that genetic diversity was well controlled up to C3 and then declined.
Although other traits were correlated with GY, they did not show any
important change after three cycles of RCGS for GY. In the end, 64.3%
of the markers changed their allele frequencies but never became
monomorphic, and 33.99% of the markers modified their allele fre-
quency by ,15%.

The target of this study was to perform three rapid cycles per year;
however, we only achieved two rapid cycles per year due to delays in the
DNA preparation and genotyping turnaround time. Therefore, further
studies in maize or other crops are required to confirm the promising
RCGS results obtained in MPP using tropical maize lines described in
this study, and examining if the length of selection cycle could be further
reduced by implementing RCGS.
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