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ABSTRACT 
Cultivated maize (Zea mays) has retained much of the genetic diversity of its wild ancestors. Here, we 
performed non-targeted high-performance liquid chromatography-mass spectrometry metabolomics to 
analyze the metabolomes of the 282 maize inbred lines in the Goodman Diversity Panel. This analysis 
identified a bimodal distribution of foliar metabolites. Although 15% of the detected mass features were 
present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases 
and tips were differentiated by flavonoid abundance, maize varieties (stiff-stalk, non-stiff-stalk, tropical, 
sweet corn, and popcorn) showed differential accumulation of benzoxazinoid metabolites. Genome-wide 
association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed 
that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait 
locus hotspots in the maize genome regulate the abundance of multiple, often metabolically related mass 
features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid 
biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid 
hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene 
expression databases, this metabolomic GWAS data set constitutes an important public resource for 
linking maize metabolites with biosynthetic and regulatory genes. 
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INTRODUCTION 1 

Plants produce wide variety of metabolites that are not directly related to their central energy 2 

metabolism or structural integrity. The distribution and diversity of these specialized metabolites 3 

are reflective of their essential functions in plant stress responses, particularly in their 4 

interactions with microbial pathogens and insect herbivores. For human societies, plant-derived 5 

specialized metabolites have long been valuable sources of flavor, nutrition, and pharmaceutical 6 

products. More recently, advances in genetics and molecular biology have led to the clarification 7 

of the complete biosynthetic pathways of plant specialized metabolites such as glucosinolates 8 

(Halkier and Gershenzon, 2006) and benzoxazinoids (Zhou et al., 2018). This knowledge has 9 

made it possible to manufacture some plant specialized metabolites at industrial scales, as well as 10 

to genetically improve crop species for increased pest and disease resistances. 11 

The productivity of maize (Zea mays), the world’s most economically important crop 12 

species, with more than 700 million metric tons harvested each year (Ranum et al., 2014), is 13 

often limited by pathogens and insect pests (Mueller, 2017). For instance, in parts of Africa, 14 

ongoing epidemics of fall armyworm (Spodoptera frugipeda) have devastated local maize 15 

production, with far-reaching socioeconomic ramifications (Stokstad, 2017). These problems 16 

highlight the need for continuous genetic improvement of pest and disease resistance in the 17 

commercial maize germplasm to cope with the spatiotemporal fluctuations of biotic stresses. 18 

Even after millennia of artificial selection, maize is known for its genetic diversity at the 19 

population level (Buckler et al., 2006; Jiao et al., 2017). Similarly, different maize inbred lines 20 

possess distinct, tissue-specific profiles of specialized metabolites (Meihls et al., 2013; Wen et 21 

al., 2014; Handrick et al., 2016; Wen et al., 2016). Therefore, combining high-throughput 22 

metabolite profiling, existing genetic resources, and genotypic data for a metabolome-scale 23 

genome-wide association studies (GWAS) will allow large-scale identification of candidate 24 

genes and loci involved in maize specialized metabolism, opening up the possibility of 25 

harnessing the natural biochemical defenses found in the broader maize germplasm for improved 26 

pest and disease resistance.  27 

Pioneering GWAS studies conducted with Arabidopsis thaliana showed that the plant 28 

metabolome has a complex genetic architecture. Genetic mapping of 327 metabolites that were 29 

detected by non-targeted metabolomics identified “hotspots” in the Arabidopsis genome that 30 

regulate the abundance of multiple metabolites (Chan et al., 2010). The regulation of 31 
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glucosinolates, a predominant class of Arabidopsis defensive metabolites, showed strong growth 32 

stage-specific effects in an analysis of 96 Arabidopsis ecotypes (Chan et al., 2011). Similarly, 33 

studies with both rice (Oryza sativa) seedling shoots and maize kernels have led to the genome-34 

wide identification of metabolic quantitative trait loci (QTL; Wen et al., 2014; Matsuda et al., 35 

2015; Wen et al., 2016).   36 

In this study, we performed liquid chromatography-mass spectrometry (LC-MS) analysis 37 

of the tips and bases of the emerging third leaves of maize inbred lines from the Goodman 38 

Diversity Panel (Flint-Garcia et al., 2005). These two tissue types were chosen because 1) they 39 

represent distinct stages of differentiation, and 2) constitutive concentrations of specialized 40 

metabolites tend to decrease as plants age (Cambier et al., 2000; Zheng et al., 2015). The 41 

Goodman Diversity Panel contains 282 maize inbred lines belonging to five genetic 42 

subpopulations and has been genotyped with over 29 million single nucleotide polymorphism 43 

(SNP) markers (Bukowski et al., 2018). More recently, this genetic mapping panel was analyzed 44 

by whole transcriptome profiling of eight distinct tissue-environment combinations (Kremling et 45 

al., 2018), including the two tissue types used in the current study. Through metabolomic GWAS 46 

of maize seedling leaves, we not only provide important insights into the nature of the maize 47 

metabolome, but we also developed a public resource that can be used to associate both known 48 

metabolites and previously unidentified LC-MS mass features with specific regulatory and 49 

biosynthetic loci in the maize genome. 50 

 51 

RESULTS 52 

Comparisons of maize seedling leaf specialized metabolomes between tissue types and 53 

genetic sub-populations 54 

We planted the 282-line Goodman Diversity Panel, along with inbred line B73 controls, and 55 

harvested seedling leaf tips and leaf bases for reversed-phase UPLC/high-resolution-MS analysis 56 

of 50% methanol extracts, which measures a wide range of mid-polarity metabolites. Due to the 57 

lack of seed germination for some maize inbred lines, losses during sample processing, and 58 

occasional low-quality UPLC-MS runs, full spectra were obtained for the following: leaf tips, 59 

negative ionization (221 inbred lines and 17 B73 control); leaf tips, positive ionization (258 60 

inbred lines and 25 B73 control); leaf bases, negative ionization (220 inbred lines and 22 B73 61 
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control); and leaf bases positive ionization (223 inbred lines and 22 B73 control). Raw MS data 62 

are available at the Cyverse Discovery Environment (doi.org/10.25739/9dsj-kw33).  63 

After filtering, more than 7000 mass features were detected in at least three of the 64 

samples (see Methods; Supplemental Data Sets 1 and 2). Principal component analysis (PCA) 65 

demonstrated that tissue type explained over 30% of the observed variance (Figure 1A). Two-66 

way analyses of variance (ANOVA) on the same data set showed that more than 97% of all the 67 

mass features analyzed were significantly influenced by tissue type (FDR < 0.05; Supplemental 68 

Data Set 3). By contrast, genetically defined maize population structure did not make a 69 

significant contribution to the variance (Figure 1B; Supplemental Data Set 3) and failed to 70 

separate in PCA, even when metabolomics data were analyzed independently within each tissue 71 

type (Figure 1C,D). Similarly, PCA within either tissue type showed no systematic bias 72 

introduced by the different blocks in which each maize inbred line was planted (Supplemental 73 

Figure 1). 74 

 75 

Metabolomic differentiation based on tissue type and genetic subpopulation are driven by 76 

different classes of specialized metabolites 77 

In the 200 to 400 nm ultraviolet (UV) absorption chromatogram, neighboring peaks tended to 78 

have similar UV absorbance profiles. Specifically, peaks eluting between 240 and 360 s had UV 79 

absorbance profiles resembling phenylpropanoids, peaks eluting between 360 and 460 s had 80 

typical benzoxazinoid-like UV absorbance profiles, and those eluting after 460 s were flavonoid-81 

like (Figure 2A,B). Measurement of a narrower window of UV absorption also showed a distinct 82 

pattern in the three different elution periods (Supplemental Figure 2).  83 

We plotted the extent of differentiation for each mass feature based on tissue type, 84 

genetic subpopulation, or their interactive effect, as measured by the negative logarithm of p-85 

values from two-way ANOVA, against their retention time (Figure 2C). These plots 86 

demonstrated that mass features from distinct ranges of the chromatogram, and hence different 87 

classes of specialized metabolites, were responsible for metabolomic differentiation by tissue and 88 

subpopulation, respectively. Specifically, mass features that were significantly different between 89 

leaf tips and bases were present in all three examined time intervals of the chromatograms, but 90 

were predominant in the flavonoid range (Figure 2C). By contrast, metabolites under significant 91 

influence from the maize subpopulation or its interaction with tissue type were almost 92 
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exclusively found among the benzoxazinoids (Figure 2C). These visual patterns were confirmed 93 

with statistical comparisons of the extent of differentiation between the retention time groups 94 

(Figure 2D). Consistent with our visual assessment of the chromatograms, the 460-570 s time 95 

interval containing flavonoids showed the strongest differentiation between tissue types (top 96 

panel, Figure 2D). Together, these observations indicate that 1) flavonoid abundance is 97 

significantly different between the maize leaf tip and leaf base, and 2) benzoxazinoid content is 98 

different between lines but not enough to cluster subpopulations together when all the mass 99 

features are included in the analysis. 100 

In support of the first observation, all major flavonoid-like UV absorption peaks were 101 

completely absent in leaf base samples and were only found in the more developmentally 102 

advanced leaf tips (Figure 3A). There are five maize genes that encode chalcone synthases, the 103 

enzyme catalyzing the first committing step in flavonoid biosynthesis (based on B73 reference 104 

genome v4; Jiao et al., 2017). Analysis of previously published transcriptomic data (Kremling et 105 

al., 2018) showed that the two most strongly expressed chalcone synthase genes 106 

(GRMZM2G422750 and GRMZM2G380650) are expressed at a significantly higher level in the 107 

leaf tips than in the leaf bases in the GWAS panel (Figure 3B). Consistent with the UV 108 

absorbance pattern, tandem MS analyses of B73 whole seedling leaf extracts demonstrated that 109 

repeated fragment patterns are found within certain ranges of retention time (Supplemental Data 110 

Set 4). Queries of an online phytochemical tandem MS spectra library, along with prior 111 

experience with the benzoxazinoid compounds, led to the identification of 26 of the 94 112 

metabolites detected under negative mode of electron spray ionization (Supplemental Data Set 113 

4). Among these identified metabolites, known phenylpropanoids eluted between 240 and 330 114 

seconds, all of the flavonoids eluted after 450 seconds, and the most abundant benzoxazinoids 115 

eluted between 300 and 360 seconds, with two low-concentration compounds eluting at an 116 

earlier retention time (210 and 246 seconds). The distribution of benzoxazinones, hydroxycitric 117 

acid, and naringenin as commonly occurring fragments in different retention time windows is 118 

illustrated in Figure 3C. 119 

As confirmation for the second observation, we identified mass features representing the 120 

most abundant benzoxazinoid compounds in maize seedling leaves, DIMBOA-Glc (2,4-121 

dihydroxy-7-methoxy-1,4-benzoxazin-3-one-β-D-glucopyranose) and its methylated glucoside 122 

derivative, HDMBOA-Glc (2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-123 
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glucopyranose). Consistent with prior observations (Meihls et al., 2013), DIMBOA-Glc was 124 

significantly depleted in tropical inbred lines, which instead contained significantly more 125 

HDMBOA-Glc (P < 0.05, ANOVA; Figure 4).  126 

 127 

Structurally related metabolites tend to be co-regulated 128 

The abundance of structurally related metabolites, which often arise from shared metabolic 129 

pathways, tends to be co-regulated in plants. To investigate this phenomenon on a global scale in 130 

the maize metabolome, we constructed mutual rank-based correlation networks with the 131 

metabolomic data set using an exponential decay function (λ = 50) and detected overlapping 132 

correlative clusters using the ClusterONE algorithm (Nepusz et al., 2012; Wisecaver et al., 2017). 133 

This analysis identified a similar number of significant clusters in leaf tips and bases (p < 0.05, 134 

Mann Whitney U-test; 15 in leaf tips and 16 in leaf bases). Consistent with the larger number of 135 

mass features detected in the leaf tip samples, clusters found in leaf tips were significantly larger 136 

than those found in leaf bases (mean = 100 vs. mean = 58; p < 0.005, Student’s t-test). We 137 

plotted the distribution of the retention times of mass features belonging to each correlative 138 

network in 10-second bins and assessed the extent of retention time clustering of each network 139 

by calculating the cumulative frequency of the top three bins (Figure 5; Supplemental Data Sets 140 

5 and 6). In 24 of the 31 detected correlative networks, at least half of the mass features were 141 

located in the top three bins, suggesting that these co-regulated mass features are structurally 142 

related. Interestingly, we found that the cumulative frequency of the top three 10-second-bins in 143 

correlative networks derived from the leaf tip metabolome (57%) was significantly lower than 144 

that of leaf base metabolome-derived networks (75%; p < 0.05, Student’s t-test).  145 

 146 

The maize metabolome is skewed towards rare metabolites 147 

Our data set provides an opportunity to examine the diversity of specialized metabolites in maize. 148 

In both tissue types, there was a bimodal frequency distribution of the mass feature occurrence 149 

rate, as measured by the percent of maize genotypes where a mass feature was detected. Whereas 150 

15% of mass features in either tissue type were present in more than 90% of all the genotypes, 151 

more than 63% of mass features were found in less than half of the examined genotypes (Figure 152 

6A). Mass features representing actual maize metabolites, rather than background noise in the 153 

MS assay, should have larger variance across genotypes than within the same genotype. The 154 
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experimental design allowed us to calculate the between- and within-genotype variance of those 155 

mass features that were detected in the replicated B73 control samples planted in each flat. 156 

Together, these two variances can be used to estimate the broad sense heritability [H2 = (Vartotal - 157 

VarB73)/Vartotal] of each mass feature, assuming that within-genotype variance in B73 is a proxy 158 

for environmental variance (Figure 6B). Based on this assessment, we found that 25% of the 159 

mass features in leaf tips and 40% of those leaf bases had H2 less than 0.2, suggesting a relatively 160 

small component of genetic variation. The overall bi-modal distribution pattern of mass feature 161 

occurrence remained intact after removing the low heritability mass features (H2 < 0.2; Figure 162 

6A).  163 

If the less common mass features were the result of background variation in the MS data 164 

set, we would expect them to have a lower signal intensity than mass features resulting from 165 

actual maize metabolites. The mean non-zero intensity of each mass feature showed significant 166 

positive correlation (R2 > 0.96) with its occurrence rate in both tissue types (Figure 6C), 167 

suggesting that less common mass features were indeed lower in abundance. However, given the 168 

slope of the regression line, a mass feature detected in only 10% of the genotypes would be on 169 

average less than ten-fold lower in intensity than a ubiquitous mass feature. By contrast, mass 170 

features of any given occurrence rate showed a hundred-fold range in peak intensity (Figure 6C). 171 

Therefore, many or most of the less common mass features are likely to represent actual maize 172 

metabolites that are present in only a subset of tested inbred lines, rather than being noise in the 173 

MS chromatograms.  174 

 175 

The genetic architecture of specialized metabolites is complex and is strongly influenced by 176 

tissue type, but not occurrence rate 177 

The existing genotype data for the Goodman Diversity Panel (Bukowski et al., 2018; Kremling et 178 

al., 2018) make it possible to perform GWAS with each mass feature as an independent trait to 179 

understand its genetic architecture. Given the large number of traits to be analyzed, we employed 180 

a rapid recursive GWAS pipeline that was recently developed using an optimized general linear 181 

model (Kremling et al., 2018). Prior to this computation-intensive analysis, the LC-MS data set 182 

was further filtered by the rate of occurrence (detected in ≥ 10% of all genotypes) and the broad 183 

sense heritability (H2 ≥ 0.2), using B73 to estimate environmental variation. Given the size of the 184 

inbred line population, it would not be possible to obtain accurate genetic mapping data for 185 
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metabolites that are present in less than 10% of the tested genotypes, i.e. present in less than ~25 186 

inbred lines. Filtering for H2 ≥ 0.2 was done only for those mass features that were present in 187 

B73. Mass features that were not present in B73 did not have an estimate of heritability and were 188 

all included in the analysis. Altogether, 1,320 mass features from the leaf bases and 2,554 mass 189 

features from the leaf tips remained after filtering (Supplemental Data Sets 7–10), and GWAS 190 

was performed for each metabolite using 29 million SNPs (Bukowski et al., 2018; data are 191 

available at Cyverse Discovery Environment, doi.org/10.25739/9dsj-kw33).  192 

To investigate the complexity of metabolite regulation in maize seedlings, we collected 193 

the top 10 most strongly associated SNP markers for each mass feature and counted the SNPs in 194 

10 kb segments spanning the maize genome. This showed that, in both leaf tips and leaf bases, 195 

the ten most significant SNP associations were in an average of 7.4 distinct 10 kb blocks (Figure 196 

7A). If the size of the scanned chromosomal segments was increased to 60 kb or 360 kb 197 

(Supplemental Figure 3), the average number of distinct blocks with significant SNP associations 198 

decreased to 6.8 and 6.2, respectively, but the overall shape of distribution was not affected. Less 199 

than 9% of all mass features analyzed in either tissue type had their top 10 most strongly 200 

associated SNP markers located in less than four 10 kb blocks. We aligned 455 mass features 201 

detected in both leaf tips and leaf bases and compared their top 50 most strongly associated SNP 202 

markers in leaf tips and bases. The majority of these traits (405 out 455) showed no overlap in 203 

their top 50 most strongly associated SNP markers, indicating that metabolic traits can be under 204 

distinct genetic regulatory mechanisms in different maize tissues, as has also been observed for 205 

glucosinolates in Arabidopsis (Chan et al., 2011). The most prevalent mass features (occurrence 206 

in > 90% of inbred lines) mapped to significantly more loci than the less common ones in the 207 

population (Figure 7B), suggesting that components of central metabolism that are found in all 208 

maize plants are subject to more complex regulation than specialized metabolites that are not 209 

essential for maize survival under all environmental conditions and are not present in all maize 210 

inbred lines. No additional pattern could be clearly identified between the occurrence rate and 211 

genetic complexity of mass features. Together, these results indicate that maize metabolic traits 212 

have a complex genetic architecture that is under the control of numerous interacting genetic loci 213 

and varies by tissue type, as has been shown previously with Arabidopsis (Chan et al., 2010; 214 

Chan et al., 2011). 215 

 216 
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Structurally related metabolites tend to be co-regulated 217 

In addition to identifying candidate genes significantly associated with individual metabolites of 218 

interest, the GWAS results can be used to look at the overall distribution of metabolite QTL. As 219 

has been reported previously for Arabidopsis (Chan et al., 2010), there were genomic hotspots 220 

that control the abundance of multiple maize metabolites. When the distributions of the most 221 

significantly associated SNP markers for 4,859 mass features were plotted in 10 kbp intervals 222 

across the maize genome, there were several loci to which a disproportionate number of 223 

metabolites were mapped (Figure 8A,C). In both leaf bases and leaf tips, three loci on 224 

chromosomes 1, 4, and 10, respectively, showed a large number of metabolite GWAS hits 225 

(Figure 8A,C). Additionally, there were genomic hotspots specific to either tissue type. The 226 

locations of these hotspots were consistent when the analysis included either the 10 or 50 most 227 

significantly associated SNP markers for each mass feature, as well as when varying the size of 228 

chromosomal blocks used to plot the QTL distribution (increasing from 10 to 60 or 360 kbp; 229 

Supplemental Figure 4).  230 

We hypothesized that the genomic hotspots would contain one or more loci that regulate 231 

multiple structurally related metabolites derived from the same biosynthetic pathway. To test this 232 

hypothesis, we ordered the mass features based on the locations of their most strongly associated 233 

SNP markers in the maize genome and calculated the variance in retention time with a sliding 234 

window of 100 mass features with adjacent QTL in the genome. Since most mass features have 235 

their most strongly associated SNP markers at multiple positions in the genome, their retention 236 

times were included in the calculations more than once. Across the entire maize genome, there 237 

was a stable background level of retention time variance (Figure 8B,D). However, there were 238 

clear dips, i.e. lower variance in the retention time, below the background level at some loci. 239 

When results from this analysis were aligned to the previously generated plots of mass features 240 

per locus (Figure 8A,C), there was co-localization of dips in retention time variance with the 241 

genomic QTL hotspots (Figure 8B,D), indicating that the abundance of structurally related 242 

metabolites tends to be co-regulated by the same genetic loci. This pattern was true for all three 243 

genomic hotspots shared by both tissue types, but was not necessarily valid all the time. For 244 

example, the second dip in retention time variance on chromosome 1 for the leaf tip data did not 245 

correspond to any increase in the number of mass features mapped to that locus. Conversely, 246 
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mass features mapped to the leaf base-specific hotspot on chromosome 3 did not have similar 247 

retention times.  248 

 249 

Genome-wide association studies reveal both known and novel genetic loci affecting 250 

benzoxazinoid accumulation 251 

To determine the efficacy of gene identification by maize metabolite GWAS, we genetically 252 

mapped the abundance of two benzoxazinoid compounds, 2-(2,4-dihydroxy-7,8-dimethoxy-1,4-253 

benzoxazin-3-one)-β-d-glucopyranose (DIM2BOA-Glc) and HDMBOA-Glc. GWAS with both 254 

metabolites confirmed known QTL containing biosynthetic genes: Bx13 on chromosome 2 for 255 

DIM2BOA-Glc (Handrick et al., 2016; Figure 9A) and Bx10-12 on chromosome 1 for 256 

HDMBOA-Glc (Meihls et al., 2013; Figure 9B), with the most significantly associated SNPs 257 

being in linkage disequilibrium (LD) with the respective biosynthetic genes. The Bx10-12 258 

genomic region also corresponds to the metabolite QTL hotspot found on chromosome 1 in both 259 

leaf tips and leaf bases (Figure 8). Interestingly, in addition to the SNP markers in LD with the 260 

known biosynthetic genes, GWAS also identified SNP markers associated with the metabolites 261 

of interest in adjacent LD blocks, suggesting the presence of cis-regulatory loci at some distance 262 

from the genes of interest (Figure 9A,B).  263 

A previously unknown locus affecting natural variation in HDMBOA-Glc was found on 264 

chromosome 9, with the most significantly associated SNPs located in a single 25 kb LD block 265 

(Figure 9B). We inferred bi-allelic haplotypes at the mapped loci on chromosome 1 and 266 

chromosome 9 based on SNPs within each locus and assigned inbred lines to one of the two 267 

haplotypes using a nearest neighbor cladogram. Bx10-12 and the newly identified locus on 268 

chromosome 9 had an additive effect on HDMBOA-Glc content (Figure 9C). The 25 kb LD 269 

block on chromosome 9 contained the region immediately 3’ of GRMZM2G108309, a gene 270 

model encoding a predicted protein phosphatase 2C family protein. Transcript profiling data 271 

(Kremling et al., 2018) showed that GRMZM2G108309 expression levels were significantly 272 

different between the inbred lines carrying one or the other allele of the 25 kb linkage block on 273 

chromosome 9 (Figure 9D). We detected a significant difference in HDMBOA-Glc content when 274 

comparing the 20 inbred lines with the highest and lowest GRMZM2G108309 expression levels, 275 

respectively (Figure 9E; Supplemental Figure 5A). However, correlation analysis with the entire 276 
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inbred line population showed no significant relationship between gene expression level and 277 

benzoxazinoid content (Supplemental Figure 5B) 278 

 279 

Phenylpropanoid hydroxycitric acid ester isomers found in distinct maize subpopulations 280 

are associated with a predicted citrate synthase  281 

One of the patterns in our analyses of specialized metabolite diversity was that there were clear 282 

outliers to the overall positive correlation between the occurrence rate and mean non-zero 283 

intensity of mass features (Figure 6B). The majority of these outliers were concentrated in the 284 

high occurrence rate range, where the linear correlative relationship was capped by maximal 285 

occurrence rate. However, in both leaf tips and bases, a group of high intensity mass features 286 

were detected in 20% or fewer of the examined genotypes (red dots in the left of the graphs in 287 

Figure 6B). Among these outliers, there were three mass features with characteristic 288 

phenylpropanoid-like UV absorbance profiles and two common daughter ions with m/z = 289 

189.004 and m/z = 127.003 under negative electron spray ionization (Figure 10A). Furthermore, 290 

the MS data indicated that the phenylpropanoid moieties in these three metabolites differed by 291 

masses consistent with the addition of hydroxyl (m/z 15.99) and methyl groups (m/z 14.01), 292 

respectively (Figure 10A).  293 

In maize inbred lines where these predicted phenylpropanoid metabolites were not 294 

detected, at least one additional peak was present in each of the three m/z channels, all of which 295 

had earlier retention times than those that were detected in less than 20% of maize lines (Figure 296 

10B). These earlier-eluting peaks also had phenylpropanoid-like UV absorption peaks and had 297 

the same daughter ions in MS/MS. The earlier elution times of the peaks with higher occurrence 298 

rate suggest that they are structural isomers with higher polarity relative to the three high-299 

abundance peaks that are present in less than 20% of maize inbred lines (Figure 10A). Two-300 

dimensional nuclear magnetic resonance (NMR) spectra of the purified higher-polarity peaks, 301 

which are present in B73 and the majority of other inbred lines, showed that they are ester 302 

conjugates of coumaric acid, caffeic acid, and ferulic acid with 2-hydroxycitric acid, respectively 303 

(Figure 10B; Supplemental Figure 6; Supplemental Data Set 11). However, when attempting to 304 

isolate the corresponding lower-polarity isomers, which were found in less than 20% of inbred 305 

lines (CML247 is shown as an example in Figure 10B), the isolated samples rapidly degraded in 306 

the NMR solvent, and hence their exact chemical structures could not be elucidated.  307 
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To examine how the pairs of phenylpropanoid hydroxycitric acid ester isomers were 308 

distributed among maize genotypes, we constructed a dendrogram of the Goodman Diversity 309 

Panel using a 66,000 SNP data set (derived from Samayoa et al. (2015); (Figure 11A)) and 310 

plotted the abundance of the three pairs of structural isomers (Figure 11B) relative to this tree. In 311 

both tissue types, the rare isomers tended to co-occur and were over-represented in the tropical 312 

inbred lines. Furthermore, the presence of the two groups of isomers was generally mutually 313 

exclusive. However, these trends were not perfect, particularly in the case of the isomers with 314 

m/z = 369.046, both of which were sporadically distributed across the population in the leaf 315 

bases without necessarily co-occurring with the other metabolites. The metabolism of these pairs 316 

of phenylpropanoid-containing isomers is likely also under developmental regulation, as 317 

demonstrated by the different distribution patterns in leaf tips and leaf bases. 318 

GWAS showed that, for all three pairs of phenylpropanoid-hydroxycitric acid ester 319 

isomers, the most strongly associated SNP markers were located within a 10 kb LD block on 320 

Chromosome 4 (Figure 11C), in the same position as a metabolite QTL hotspot for both leaf tips 321 

and leaf bases that is shown in Figure 8. In the B73 reference genome, this LD block was 322 

contained within a single gene model, GRMZM2G063909, which was annotated as an ortholog 323 

of Arabidopsis and rice citrate synthase genes (Figure 11D,E). GRMZM2G063909 expression 324 

was not significantly different between maize inbred lines accumulating different structural 325 

isomers of the phenylpropanoid hydroxycitric acid esters (Figure 11F; data from Kremling et al., 326 

2018), suggesting that, consistent with all linked SNPs being in the coding region, structural 327 

variation in the encoded enzyme is more likely to be responsible for the observed metabolic 328 

differences.  329 

To independently verify the genetic association between GRMZM2G063909 and the 330 

phenylpropanoid hydroxycitric acid ester isomers, we examined two sets of sixth-generation 331 

recombinant inbred lines (RILs) derived from Ki11 x B73 and CML247 x B73 (McMullen et al., 332 

2009) to identify RILs with residual heterozygosity at GRMZM2G063909. Whereas B73 333 

encodes the temperate maize isomers of the phenylpropanoid hydroxycitric acid esters, Ki11 and 334 

CML247 encode the tropical maize isomers. Progeny of these RILs families segregated near-335 

isogenic lines that were either heterozygous or homozygous for one or the other parental allele 336 

(Figure 12A,B). MS assays showed perfect co-segregation between the genotypic markers and 337 

the two classes of phenylpropanoid hydroxycitric acid esters (Supplemental Figure 7). Whereas 338 



 

13 

the two tropical inbred lines also accumulated small amounts of the more polar isomers that are 339 

characteristic of temperate inbred lines, B73 tissues did not contain any of the less polar 340 

phenylpropanoid hydroxycitric acid esters (Figure 12C-E). Furthermore, heterozygous lines 341 

showed intermediate phenotypes, producing both isomers, but in lesser abundance than either 342 

homozygote.  343 

 344 

DISCUSSION 345 

Technological advances in mass spectrometry and accumulating high-density genotype data are 346 

enabling metabolome-scale quantitative genetics studies. Prior studies of this type have focused 347 

on topics ranging from primary metabolites of nutritional interest to known specialized 348 

metabolites in both model plants and economically relevant crop species (Chan et al., 2010; 349 

Chan et al., 2011; Riedelsheimer et al., 2012; Chen et al., 2014; Wen et al., 2014; Matsuda et al., 350 

2015). However, unlike transcriptomic data, where each transcript can be functionally annotated 351 

to at least some extent based on sequence homology and structural features, most mass features 352 

from non-targeted metabolomics data sets represent unknown metabolites, and mass 353 

spectrometry data provide incomplete information about their structures. Our metabolome-scale 354 

correlation network analyses (Figure 5) and genome-wide association studies (Figure 8; 355 

Supplemental Data Sets 12 and 13) provide a basis for structural and functional assignments of 356 

the many unknown metabolites in maize seedlings. These metabolomic genetic mapping data 357 

complement other currently available approaches to metabolite identification, including large-358 

scale co-elution tests with known compounds and the construction of molecular networks based 359 

on shared tandem mass spectrometry (MS/MS) fragments, which are indicative of structural 360 

similarity (Nguyen et al., 2013; Matsuda et al., 2015). 361 

We conducted this GWAS of maize metabolomic data with a single individual plant of 362 

each maize inbred line. The replicates did not comprise individual plant lines, but rather the 363 

different alleles at each locus in the genome. Since all loci are bi-allelic (non-biallelic ones were 364 

filtered out), each allele was sampled an average of more than 100 times in our genetic mapping 365 

panel. There are thousands of available maize inbred lines, and many of these have been fully 366 

genotyped. Therefore, our experiments were not limited by maize genetics, but rather by the 367 

resources that were available for growing plants and running MS assays. If more resources had 368 
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been available, we would have analyzed additional independent lines rather than replicates of the 369 

current set, thereby gaining a greater amount of genetic mapping resolution in the GWAS. 370 

Transcriptome data for the Goodman Diversity Panel were also collected with single 371 

replicates to conduct a GWAS of maize gene expression levels (Kremling et al., 2018). In 372 

addition to the genetic mapping data, this publication also provides a resource for other maize 373 

researchers who want to compare maize gene expression levels to other data that they have 374 

generated. Similar gene expression resources are available and commonly for Arabidopsis and 375 

other plant species (e.g. www.arabidopsis.org). There will always be potential problems in the 376 

application of such gene expression resources to plants that were grown in different 377 

environments. However, by using the same maize growth conditions as Kremling et al., we have 378 

been able to minimize such variation in our comparisons of maize metabolite content and gene 379 

expression. 380 

 Our data sets allowed us to assess variation in the maize specialized metabolome in two 381 

tissue types across a diverse population of inbred lines. The metabolomes of both leaf tips and 382 

leaf bases demonstrated bi-modal distributions, with a relatively small core component and a 383 

large number of rare mass features (Figure 6A). Compared to the presence/absence distribution 384 

of gene expression in the maize pan-transcriptome (Hirsch et al., 2014), the profiles of our 385 

metabolomic data are much more left-skewed, i.e. the majority of maize metabolites are present 386 

in less than 50% of the inbred lines. This is perhaps reflective of the more commonly non-387 

essential nature of specialized metabolites relative to transcripts, which contain large numbers of 388 

housekeeping genes that are involved not only in primary metabolism but also other essential 389 

cellular functions. However, the observed distribution differences could also result from the 390 

greater sensitivity of RNA-seq-based transcriptomics compared to metabolomics, which would 391 

allow detection of rare transcripts in a larger number of maize inbred lines. 392 

 Broad sense heritability of metabolite content, estimated as 393 

[𝐻2  =
Variance(total)  −  Variance(B73)

Variance(total)
] 

, differs according to metabolite prevalence in the population. In particular, the on average lower 394 

heritability of less common mass features suggests that some of them may be artifacts of the MS 395 

assay. Nevertheless, there are a significant number of uncommon metabolites with high 396 

heritability. The somewhat paradoxical observation of negative heritability is the result of 397 

different sample sizes. Whereas only approximately 20 B73 samples were used to calculate 398 
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environmental variance, total population variance was calculated based on more than 200 inbred 399 

lines. Estimating environmental variance based on only one genotype is a somewhat imperfect 400 

approach. However, the resources for measuring multiple replicates of all maize inbred lines by 401 

MS were not available. 402 

 PCA of the metabolome clearly differentiates leaf tips and leaf bases, but not different 403 

maize sub-populations (Figure 1). In the case of the two tissue types, one factor that contributes 404 

to their separation by PCA is the presence and absence of flavonoids. Prior studies also have 405 

documented such developmental regulation of flavonoids and other maize metabolites (Jahne et 406 

al., 1993; Pick et al., 2011). It is likely that the more exposed position of leaf tips requires more 407 

flavonoids for defense against biotic and abiotic stress. Despite the different benzoxazinoid 408 

(Figure 4) and phenylpropanoid hydroxycitric acid ester (Figure 11) profiles in tropical and 409 

temperate maize, PCA did not differentiate maize sub-populations (Figure 1). A possible cause 410 

of this effect could be a random presence/absence distribution of the large number of uncommon 411 

maize metabolites in the different maize sub-populations. 412 

Our study provides a metabolome-scale evaluation of the complex genetic architecture of 413 

metabolic traits in maize seedling leaves. As observed previously in Arabidopsis (Chan et al., 414 

2010), most maize metabolites have multiple biosynthetic or regulatory loci significantly 415 

associated with them. Moreover, with the exception of the most common metabolites, we 416 

observed no consistent correlative relationship between genetic architecture complexity and 417 

occurrence rate of metabolic traits (Figure 7). We speculate that individual metabolic traits are 418 

regulated by different sets of genetic loci in different subsets of the maize population. This 419 

observation also could explain the significantly higher number of mapped loci associated with 420 

the most ubiquitous mass features (Figure 7B), which are more likely to be involved in primary 421 

metabolism.  422 

Another omic-scale pattern identified from our study is tissue-specific and shared 423 

metabolite QTL hotspots (Figure 8). This non-uniform distribution of significant GWAS hits is 424 

comparable to results from published Arabidopsis and rice metabolite GWAS (Chan et al., 2010; 425 

Chen et al., 2014). Similar MS fragmentation and UV absorbance profiles of metabolites in the 426 

QTL hotspots indicate that structurally related metabolites tend to be co-regulated by shared 427 

genomic loci. The presence of these metabolite QTL hotspots generates hypotheses for the 428 

regulation of specialized metabolism both for specific metabolites and at a system scale. Further 429 
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studies of these loci could lead to the elucidation of the underlying physiological mechanisms of 430 

these genetic associations. 431 

The QTL hotspot on Chromosome 1 (Figure 8) represents a 110 kb region containing the 432 

paralogous BX10, BX11, and BX12 genes, encoding O-methyltransferases that catalyze the 433 

biosynthesis of HDMBOA-Glc (Meihls et al., 2013; Handrick et al., 2016). Mass features 434 

mapped to this locus include HDMBOA-Glc, DIMBOA, and other benzoxazinoid compounds. 435 

However, several mass features that were not associated with known benzoxazinoid compounds 436 

also mapped to this locus, suggesting the regulation of other classes of maize specialized 437 

metabolites. Such regulation could be indirect, as benzoxazinoid degradation has been shown to 438 

induce other maize defense responses (Ahmad et al., 2011; Meihls et al., 2013).  439 

The identification of a HDMBOA-Glc regulatory locus on chromosome 9, which was not 440 

identified in several other bi-parental mapping studies (Meihls et al., 2013; Zheng et al., 2015; 441 

Handrick et al., 2016), highlights the power of investigating a population with broader genetic 442 

diversity and denser SNP markers. However, it also illustrates one of the potential shortcomings 443 

of the current GWAS approach. The absence of a large part of the maize pan-genome in any 444 

given inbred line, in combination with the use of the B73 genome sequence as the basis our 445 

GWAS, may have led to incomplete identification of metabolite QTL. The expression level of 446 

GRMZM2G108309 on chromosome 9 is associated with HDMBOA-Glc content (Figure 9), but 447 

all of the associated SNPs are downstream of this candidate gene. Although this could represent 448 

3’ regulation of GRMZM2G108309 expression, another possibility is that we have mapped a 449 

locus that is not present in B73 but regulates the accumulation of HDMBOA-Glc in as yet 450 

unsequenced maize inbred lines. Similarly, the metabolite QTL hotspot on chromosome 10, 451 

which influences a dozen mass features in both leaf tips and bases, spans a 30 kb region 452 

containing seven retroelements and a low confidence gene model in B73. The abundance of 453 

transposon genes in this region in the B73 genome suggests that there may be presence/absence 454 

variation among the diverse maize inbred lines, and that the causative gene may not be present in 455 

the B73 reference genome. As more high-quality maize genome sequences become available in 456 

the next few years, it will be possible to look for such genes that may be missing from B73 and 457 

other currently available maize genomes.  458 

The presence of other metabolite QTL hotspots may also lead to the identification of 459 

previously unknown regulatory loci of maize metabolism. For instance, nine mass features found 460 
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in leaf tips had at least one of their 10 most-associated SNP markers located within a 20 kb 461 

region on chromosome 3 (Figure 8). This genomic region contains a single gene model, 462 

GRMZM2G143723, which is analogous to a rice C2H2 zinc finger protein and thus may 463 

represent a regulatory gene for this group of metabolites.  464 

Although phenylpropanoid hydroxycitric acid esters were previously identified as maize 465 

metabolites (Ozawa et al., 1977; Plenchamp, 2013), their biosynthesis and structural diversity 466 

have not been investigated. Coding-sequence variation in the identified citrate synthase-like gene 467 

(GRMZM2G063909; Figure 11) likely leads to the formation of multiple isomers of coumaroyl- 468 

caffeoyl-, and feruloyl hydroxycitric acid. Further experiments will be needed to confirm the 469 

effects of specific SNPs, both in vivo using transgenic maize plants and in vitro with enzyme 470 

activity assays. 471 

We identified the more polar phenylpropanoid hydroxycitric acid esters as the 2-O-472 

acylated derivatives of hydroxycitric acid (Figure 10C). Due to their instability, it was not 473 

possible to determine the structures of the less polar isomers that are typical of tropical maize. 474 

However, given that 3-O-acylated hydroxycitric acid esters are prone to acid- or base-catalyzed 475 

elimination of the 3-O-acyl moiety, we hypothesize that these later-eluting isomers represent the 476 

corresponding 3-O-acylated hydroxycitric acid esters of coumaric acid, caffeic acid, and ferulic 477 

acid, respectively. The accumulation of phenylpropanoid hydroxycitric acid esters is induced by 478 

the soil bacterium Pseudomonas putida (Plenchamp, 2013). Thus, it is tempting to speculate that 479 

these metabolites have a defensive function and that the two groups of isomers represent 480 

different defensive properties of this pathway that have been selected during the breeding of 481 

temperate and tropical maize varieties, respectively.  482 

By demonstrating the use of maize inbred lined from the Goodman Diversity Panel to 483 

map metabolite quantitative traits to the single-gene or near single gene level (Figures 9, 11), we 484 

have generated a rich resource of high-resolution associations between maize metabolic 485 

phenotypes and genetic loci. Large gene expression data sets generated with DNA microarrays or 486 

Illumina-based sequencing (RNA-seq) are frequently used for experimental validation and to 487 

generate ideas for further research. In a similar manner, our metabolomic association mapping 488 

data constitute a community resource that will allow for the formulation of testable hypotheses 489 

and functional analysis of diverse maize metabolites. Future researchers who are investigating 490 

maize metabolites LC-MS will be able to link their identified mass features with our genetic 491 
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mapping data to identify potential biosynthetic and regulatory loci. For instance, if our mapping 492 

data (Supplemental Data Sets 12 and 13) had been available, the authors who previously reported 493 

the discovery of phenylpropanoid hydroxycitric acid esters in maize (Ozawa et al., 1977; 494 

Plenchamp, 2013) could have immediately associated their metabolites with GRMZM2G063909, 495 

the citrate synthase-like gene that regulates their relative abundance (Figures 8 and 9). 496 

Conversely, someone investigating the function of GRMZM2G063909 could look up this gene 497 

in our data tables to identify mass features whose abundance is influenced by this locus. 498 

Furthermore, the availability or our raw MS data files and genetic mapping data in the Cyverse 499 

Discovery Environment (doi.org/10.25739/9dsj-kw33) will enable future analyses beyond what 500 

we have done for the current project. 501 

Our metabolomic assays, which were focused on mid-polarity metabolites isolated in a 502 

single extraction of maize seedling leaves, provide only a snapshot of the total maize 503 

metabolome. Future research will need to be directed at identifying metabolites that are extracted 504 

by other methods, from other maize tissues and growth stages, as well as under biotic stress 505 

conditions that are likely to induce the production of metabolites that are otherwise not abundant 506 

enough to be reliably detected. Nevertheless, the genetic loci and alleles that we have identified 507 

will be useful for marker assisted breeding to increase the production of targeted maize 508 

metabolites, thereby promoting pathogen resistance or other important agronomic traits. 509 

510 

METHODS 511 

Plant growth and tissue collection 512 

All maize (Zea mays) seeds were originally obtained from the Maize Genetics Cooperation Stock 513 

Center (Champaign-Urbana, IL, USA). To ensure comparability of our metabolomics data with 514 

previous published transcriptomics data collected in the same tissue types, the same seed stocks 515 

were used and the growth conditions were replicated in the same greenhouse space at the same 516 

time of the year, early June (Kremling et al., 2018). Eight seeds of each maize genotype were 517 

planted in approximately 50 cm3 vermiculite, and the entire diversity panel was fitted into 518 

twenty-six 30 cm × 60 cm 96-cell flats. Plants were grown in a greenhouse under natural 519 

sunlight. To control for micro-environmental variation, eight B73 seeds were included in each 520 

flat, and all flats were randomized daily. When the third leaf had visibly emerged from the 521 

whorl, two centimeters of tissue from the leaf tips and bases of these leaves were collected. 522 
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Tissue was collected only from maize inbred lines where at least two of the planted seeds had 523 

germinated. For leaf base tissues, seedlings were cut at the soil line and unrolled to expose the 524 

leaf base. For each maize inbred line, tissues from two seedlings (19 to 120 mg) were pooled, 525 

weighed, snap frozen in liquid nitrogen, and stored at -80 °C for later metabolite extraction. The 526 

time between cutting of the maize seedlings and placing the weighed samples into liquid nitrogen 527 

was less than three minutes. To minimize the effects of diurnal variation in the maize 528 

metabolome, all samples were harvested in a two-hour time window between 10 am and noon. 529 

With the exception of inbred line B73, single replicates were collected for each maize line that 530 

was analyzed. 531 

 532 

Metabolomics analyses and data preprocessing  533 

Frozen seedling leaf tissues were extracted with 200 µL of 50% methanol acidified with 0.1% 534 

formic acid, and analyzed on a Sigma Supelco reverse phase C18 column on a Dionex 3000 535 

Ultimate UPLC-diode array detector system coupled to a Thermo Q Exactive mass spectrometer. 536 

The two mobile phase solvents were water (Solvent A) and acetonitrile (Solvent B), both 537 

acidified with 0.1% formic acid. The mobile phase gradient ran from 95% Solvent A at 0 538 

minutes to 100% Solvent B at 10.5 minutes with curvature of 2 to optimize compound separation 539 

while reducing the runtime of each individual analysis to accommodate our large sample size. 540 

Each extract was separately analyzed with both positive and negative modes of electron spray 541 

ionization. A blank sample (0.1 µL 100% methanol) was added at the beginning of each batch 542 

and between every 60 runs to wash potential residuals off the LC column and to allow 543 

compensation for background signals. Raw mass spectrometry output files were converted to 544 

mzxml formats with the MSConvert tool using an inclusive MS level filter (Chambers et al., 545 

2012). Metabolite quantification was estimated with signal intensity acquired through the 546 

XCMS-CAMERA mass scan data processing pipeline (Tautenhahn et al., 2008; Benton et al., 547 

2010; Kuhl et al., 2012). To account for potential rare metabolites occurring in this diverse 548 

population, the minimal sample threshold for keeping a mass feature was set at three at the 549 

grouping step of the XMCS processing. For initial chemical diversity analyses, LC-MS results 550 

from different tissue types were processed together to allow comparison across tissue types. For 551 

tissue-type specific statistical analyses and GWAS, only LC-MS results from the same tissue 552 
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type were aligned to one another and processed as a group to avoid widespread zero values 553 

introduced by tissue-specific mass features. 554 

Mass features detected by the XCMS-CAMERA pipeline were filtered based on their 555 

retention times (60-630 seconds) and exact masses (m/z < 0.5 at first decimal point), and peaks 556 

annotated as naturally occurring isotopes were removed. Specific parameters that were used are 557 

described in the Supplemental Methods. Peaks annotated as MS adducts were retained because 558 

we had observed a high rate of false annotation of real metabolites into this category. Mass 559 

feature quantification was then corrected by tissue fresh weight and normalized by the total ion 560 

concentration of each sample to account for technical variation. 561 

562 

Chemical diversity analyses 563 

Measurement of each mass feature across the diversity panel was log-transformed for 564 

multivariate analyses. Zero values were changed to 1 prior to log-transformation. This data set 565 

was uploaded to the MetaboAnalyst 3.0 online tool platform for principal component analysis 566 

and two-way ANOVA (Xia et al., 2015). The mass feature list was further filtered by 567 

interquartile range and Pareto scaled before these analyses. In both tissue types, a small number 568 

of genotypes had only data available from either positive or negative ionization mode analysis 569 

due to failed run under the other mode. These missing data were replaced by zeros to minimize 570 

their influence on the overall data structure without losing the usable data. Each maize inbred 571 

line was assigned to a genetic subpopulation as defined in Flint-Garcia et al. (2005). All other 572 

statistical analyses and data visualization were carried out in R and Microsoft Excel. 573 

574 

MS2 analysis 575 

B73 seedlings were grown under comparable growth conditions described above, and the third 576 

leaves from three seedlings were independently extracted and subjected to the same LC inlet 577 

method as described above. In addition to the full MS scan in the original method under either 578 

positive or negative mode of electron spray ionization (collision energy = 20V), another MS scan 579 

focused on the top 5 features from each previous scan was included to provide extra 580 

fragmentation. MS2 spectra from the results were extracted and the major fragment peaks were 581 

manually identified. Each MS2 spectrum was queried to the ReSpect for Phytochemical online 582 
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(Sawada et al., 2012), and three or more exact matches between input and a reference chemical 583 

was set as the criterion for a peak identification. 584 

 585 

Benzoxazinoid identification 586 

Benzoxazinoids were identified based on known masses, purified standards, known 587 

benzoxazinoid profiles of 25 maize inbred lines that are included in the GWAS panel (Meihls et 588 

al., 2013), and several years of experience in the identification and analysis of maize 589 

benzoxazinoids (Meihls et al., 2013; Mijares et al., 2013; Betsiashvili et al., 2015; Tzin et al., 590 

2015b; Tzin et al., 2015a; Tzin et al., 2017; Zhou et al., 2018). 591 

 592 

Structural confirmation of phenylpropanoid hydroxycitric acid esters 593 

The three phenylpropanoid hydroxycitric acid esters examined in this study were extracted 594 

overnight at 4 °C from bulk snap-frozen B73 seedling leaves with 50% methanol acidified with 595 

0.1% formic acid. Solid debris was removed through centrifugation and the crude extract was 596 

concentrated with a Buchi Rotovapor. Target compounds were separated with a 597 

water:acetonitrile gradient on a ZORBAX Eclipse XDB C18 column on an Agilent 1100 HPLC 598 

system (Agilent, Santa Clara, CA). Purified compounds were dried, weighed, and re-dissolved in 599 

pure methanol. NMR spectroscopy analyses were carried out on a Unity INOVA 600 instrument 600 

(Varian Medical Systems, Palo Alto, CA) with the following conditions: 256 scans for 1H NMR; 601 

nt = 16 and ni = 800 for COSY and nt = 32 and ni > 800 for HSQC and HMBC.   602 

 603 

Genotyping of maize recombinant inbred lines 604 

B73 x Ki11 and B73 x CML247 RILs from a maize nested association mapping population 605 

(McMullen et al., 2009) were identified based on their residual heterozygosity in the area of the 606 

GRMZM2G063909 gene (based on genotyping data at www.panzea.org). DNA was extracted 607 

from three-week-old seedlings using KAZU DNA extraction buffer according to the 608 

manufacturer’s instructions (www.kerafast.com). A polymorphic marker near the 609 

GRMZM2G063909 gene was amplified using the primers F: GACAGGGAAGGTATATGC and 610 

R: GATAGAGCATCAACTTGATC in a reaction containing 7.5 µl GoTaq MasterMix, 2.5 µl of 611 

each primer, and 2.5 µl maize genomic DNA. The PCR conditions were 95 °C 3 min, 34 cycles 612 



 

22 

(95 °C 30 sec, 60 °C 30 sec, 72 °C 30 sec), and 5 min 72 °C. Amplified products were separated 613 

on 1% agarose gels and detected by ethidium bromide staining.  614 

 615 

Correlative network analyses  616 

The metabolomic data sets were used to calculate pairwise Pearson correlation matrices and then 617 

mutual rank matrices for the two tissue types separately. Pairwise mutual rank indices were 618 

converted to edge weights by an exponential decay functions, with λ = 50 as previously 619 

described (Wisecaver et al., 2017). For each conversion, edges with weight lower than 0.01 were 620 

filtered out. These edge lists were imported into Cytoscape v 3.4.0 (Shannon et al., 2003), and 621 

overlapping clusters were detected with the ClusterONE app (Nepusz et al., 2012).  622 

 623 

Genome-wide association study with metabolic traits 624 

The signal intensity of each mass feature across the population was log-transformed. Box-cox 625 

transformation was skipped, as it distorted the distribution of the rare mass features with many 626 

zero values. Mass features were filtered based on estimated broad sense heritability and rate of 627 

occurrence as described in the Results section, and the remaining 3,991 mass features were 628 

analyzed with the fast GWAS pipeline (Kremling et al., 2018). To reduce data storage to a 629 

realistic level, only SNPs with –log(p) ≥ 5 for each mass feature were recorded. The top 50 most 630 

significantly associated SNP markers of each mass feature from leaf tips (Supplemental Data Set 631 

12) and leaf bases (Supplemental Data Set 13) were extracted for easier reference. 632 

 To survey the genetic architectures of metabolic traits and investigate their relationship 633 

with trait heritability and occurrence rate at a metabolomic scale, the top 10 most strongly 634 

associated SNP markers for each metabolic trait to three different fixed size LD blocks, namely 635 

10 kb, 60 kb, and 360 kb were mapped. As expected, more metabolic traits have their top GWAS 636 

SNP hits located within fewer number of LD blocks as the estimated LD size increases, but the 637 

overall shape of distribution was not affected (Supplemental Figure 3). The same LD-block 638 

assigning process was used to generate the overview of GWAS hits distribution across the maize 639 

genome, by counting the numbers of mass features mapped to each LD block, and plotting them 640 

according to the physical location of the LD blocks in the maize genome. Similarly, the locations 641 

of metabolite QTL genomic hotspots are consistent across different window sizes of LD 642 

(Supplemental Figure 4). Finally, GWAS hits were ordered based on their physical location in 643 
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the maize genome, and the log variance of mass feature retention time of 100 adjacent hits was 644 

calculated using a sliding window algorithm. 645 

646 

Local LD estimation, haplotype inference, and inbred line relationships 647 

SNP marker data across the same GWAS diversity panel around the most strongly associated 648 

SNP markers for each trait were downloaded from the Cyverse Discovery Environment under 649 

the following directory (iplant/home/shared/panzea/hapmap3/hmp321) and used to estimate local 650 

LD with the pairwise correlation with sliding window algorithm implemented in TASSEL 5.2.40 651 

(Bradbury et al., 2007). Bi-allelic haplotypes at genetic loci associated with HDMBOA-Glc on 652 

Chromosome 1 and Chromosome 9 were inferred based on SNP data at either locus with a 653 

nearest neighbor cladogram also implemented in TASSEL 5.2.40. A smaller SNP data set 654 

(Samayoa et al. (2015)) with filtering for maximal missing data (<80%), maximal heterozygosity 655 

level (<50%), and minimal minor allele frequency (>30%) was use to estimate the phylogenetic 656 

relationship among the maize inbred lines included in this study. Approximately 66,000 SNP 657 

markers were retained after the filtering process and used to calculate a pairwise distance matrix 658 

with TASSEL 5.2.40. This distance matrix was then used to construct a dendrogram using a 659 

hierarchical clustering algorithm with the Ward method implemented by the hclust function in R. 660 

661 

Accession numbers 662 

Sequence data discussed in this article can be found in the GenBank library/MaizeGDB gene 663 

records under the following accession numbers: NC_024465.2 664 

(35957502..35959127)/GRMZM2G108894; NC_024462.2 665 

(204719770..204722586)/GRMZM2G114471; NC_024462.2 666 

(196893216..196896503)/GRMZM2G422750; NC_024460.2 667 

(230953451..230957085)/GRMZM2G151227; NC_024459.2 668 

(233440789..233442623)/GRMZM2G380650; NC_024459.2 669 

(67312119..67314042)/GRMZM2G311036; NC_024459.2 670 

(67228930..67231301)/GRMZM2G336824; NC_024459.2 671 

(67109158..67116836)/GRMZM2G023325; NC_024460.2 672 

(238143556..238145183)/AC148152.3_FG005; NC_024467.2 673 

(128358117..128362499)/GRMZM2G108309; NC_024462.2 674 
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(238977913..238988971)/GRMZM2G063909; NC_024461.2 675 

(5057135..5060050)/GRMZM2G143723. 676 

Raw LC-MS result files, LC-MS2 results files, full FastGlm GWAS results files for all filtered 677 

mass features, and raw 1-D proton, 2-D COSY, HSQC, HMBC NMR spectra are freely 678 

accessible through the Cyverse Discovery Environment (doi.org/10.25739/9dsj-kw33). The 679 

method used to extract annotated peak intensity from mass spectrometry raw files with the 680 

XCMS-CAMERA pipeline is also available under the same directory in the Cyverse Discovery 681 

Environment. 682 

683 

Supplemental Data 684 

Supplemental Figure 1. Maize seedling leaf specialized metabolomes are not significantly 685 

different among experimental blocks.686 

Supplemental Figure 2. Major peaks from distinct ranges of the chromatogram share 687 

characteristic UV absorbance profiles. 688 

Supplemental Figure 3. Frequency distributions of genetic architecture complexity of metabolic 689 

traits are consistent across different LD window sizes. 690 

Supplemental Figure 4. Presence and locations of metabolite QTL hotspots are consistent 691 

across different LD window sizes. 692 

Supplemental Figure 5. Correlation of GRMZM2G108309 expression and HDMBOA-Glc 693 

content. 694 

Supplemental Figure 6. NMR spectra. 695 

Supplemental Figure 7. Chromatograms of isomers of phenylpropanoid hydroxycitric acid 696 

ester. 697 

Supplemental Data Set 1. Mass features detected from positive electron spray ionization mass 698 

spectrometry in seedling leaves of diverse maize inbred lines. 699 

Supplemental Data Set 2. Mass features detected from negative electron spray ionization mass 700 

spectrometry in seedling leaves of diverse maize inbred lines.701 

Supplemental Data Set 3. Two-way analysis of variance results of mass features based on tissue 702 

type and genetic subpopulation. 703 

Supplemental Data Set 4. Major fragments from MS2 analysis of B73 seedling leaf extract 704 

under negative mode of electron spray ionization. 705 
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Supplemental Data Set 5. Overlapping significant correlative networks of mass features 706 

detected in tips and bases of maize seedling leaves. 707 

Supplemental Data Set 6. Retention time distribution of mass features in each correlative 708 

network. 709 

Supplemental Data Set 7. Mass features detected from negative electron spray ionization mass 710 

spectrometry in seedling leaves tips of diverse maize inbred lines.711 

Supplemental Data Set 8. Mass features detected from positive electron spray ionization mass 712 

spectrometry in seedling leaves tips of diverse maize inbred lines.713 

Supplemental Data Set 9. Mass features detected from negative electron spray ionization mass 714 

spectrometry in seedling leaves bases of diverse maize inbred lines.715 

Supplemental Data Set 10. Mass features detected from positive electron spray ionization mass 716 

spectrometry in seedling leaves bases of diverse maize inbred lines. 717 

Supplemental Data Set 11. 2D-NMR data of maize phenylpropanoid hydroxycitric acid esters. 718 

Supplemental Data Set 12. Top 50 most significantly associated SNP markers of mass features 719 

detected in maize seedling leaf tips. 720 

Supplemental Data Set 13. Top 50 most significantly associated SNP markers of mass features 721 

detected in maize seedling leaf bases. 722 

Supplemental Methods. Extracting annotated peak intensity from mass spectrometry raw files 723 

with the XCMS-CAMERA pipeline. 724 
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Figure 1. Maize specialized metabolome significantly differentiates leaf tips and bases, but 
not genetic subpopulations. (A) Principal component analysis differentiates the metabolomes of 
maize seedling leaf tips and bases. (B) Consistently, more mass features are significantly different 
by tissue type than between subpopulations (two-way ANOVA, FDR < 0.05). Number of mass 
features that differ by tissue type (red),  subpopulation (yellow), or their interactive effect (blue) 
are shown in the colored circles, with overlaps. (C,D) Within either tissue type, genetic 
subpopulations cannot be differentiated by principal component analysis based on their overall 
metabolomic fingerprint.
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Figure 2. Metabolomic differentiation between tissue types and subpopulations is driven by 
different classes of specialized metabolites. Mass features with characteristic UV absorbance profiles 
of  phenylpropanoids, benzoxazinoids, and flavonoids (A) are found in distinct segments of the MS 
chromatogram (B).  (C) Each mass feature was plotted based on its retention time (x-axis) and –log(p) 
by either tissue type, subpopulation, or their interactive effect (y-axes; Two-way ANOVA), and aligned 
to a sample total ion chromatogram. (D) Average –log(p) from two-way ANOVA by each variable is 
compared among three retention time ranges, corresponding to three classes of specialized 
metabolites. Different letters indicate P < 0.05, ANOVA followed by Tukey’s HSD test. Numbers in 
the bars indicate sample sizes. Error bars = standard error.
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Figure 3. Flavonoids are absent and chalcone synthases expression is low in seedling leaf base 
tissues. (A) Sample UV absorbance chromatograms of the seedling leaf tip and base of the same 
genotype show a lack of peaks in the flavonoid time range (460-570 seconds) in the leaf tip and 
base. (B) Average expression levels of five chalcone synthase-encoding gene models in the B73 
reference genome v4 (Annotation 5b+) across the Goodman diversity panel are compared between 
these two tissue types with Student’s t-tests (*FDR < 0.05; N = 300 for each tissue type/gene model 
combination). Error bars = standard errors. Expression data were obtained from Kremling et al., 
2018. (C) Distribution of MSMS fragmentation motifs representative of three structural backbones 
is clustered in each retention time bin defined by characteristic peaks in the UV absorbance 
chromatograms.
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Figure 4. Tropical and temperate maize lines accumulate different benzoxazinoid 
compounds. Maize inbred lines were assigned to genetic subpopulations defined in Flint-Garcia 
et al., 2005. (A) DIMBOA-Glc and (B) HDMBOA-Glc in seedling leaf tips were estimated 
based on their respective representative mass features detected under negative electron spray 
ionization mode (DIMBOA-Glc [M]-: mz = 372.09; HDMBOA-Glc [M+FA]-: mz = 432.11). 
Error bars = standard error. Different letters indicate significant difference (p < 0.05), ANOVA 
followed by Tukey’s HSD test. The number of genotypes in each sub-population is indicated at 
the base of the columns.
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Figure 5. Mass features in the same correlation network tend to have similar retention times. 
Distributions of retention times of mass features of each correlation network plotted in ten-second 
increment bins. Density and p-value (one-sided Mann-Whitney U-test) of each network were calculated 
using the graph-clustering algorithm ClusterOne. The top 3 sum is the accumulative percentage 
frequency of the top 3 ten-second bins, which is used to assess the level of clustering in retention time 
within each network. Only two significant networks with contrasting level of retention time clustering 
from either tissue type are shown. All other significant networks (p < 0.05) are listed in Supplemental 
Data Sets 4 and 5.
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Figure 6. Mass feature occurrence rates are bimodally distributed and are positively correlated with 
their average non-zero intensity. (A) Distribution of mass features before (white) and after (grey) filtering 
by broad sense heritability in inbred line B73 (H2 > 0.2) in either tissue type plotted in 10% incremental 
bins. (B) Average heritability of mass features within each 10% occurrence incremental bins with exclusive 
lower boundaries and inclusive upper boundaries. The numbers of mass features in each bin before and after 
filtering by heritability are shown below and above the x-axis in each column, respectively.  (C) Each mass 
feature in either tissue type was plotted based on its occurrence rate (x-axis) and the log of average non-zero 
intensity scale (y-axis). Significant positive linear correlations between the two variables are found in both 
tissue types and indicated by blue dashed lines. Mass features that are above the 99% confidence interval of 
the overall linear correlation patterns are marked in red.
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Figure 7. Metabolic traits tend to have complex genetic architecture irrespective of their 
heritability or occurrence rate. (A) Distribution of mass features in leaf tips and bases plotted based on 
the number of 10 kb LD blocks that contain one of their top 10 strongest associated SNP markers. 
Statistical mean of each distribution is given and marked by an arrow. This measurement was then 
compared across different occurrence rate bins (B) by one-way ANOVA and Tukey HSD. Groups 
significantly different from each other (p < 0.05) are denoted with different letters above their respective 
columns. Numbers in the bars indicate number of mass features in each bin. Error bars = standard errors. 
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Figure 8. Metabolite GWAS hotspots tend to be associated with mass features that have similar 
retention times. (A,C)  The number of mass features with at least one of their top 10 or top 50 most 
strongly associated SNP marker located in each 10 kbps block plotted for either tissue type. Results of 
neighboring chromosomes are shown in different colors, and results based on different top SNP threshold 
(10 or 50) are indicated by different color shades. (B,D) Variance in the retention time of 100 mass 
features with adjacent GWAS hits in a sliding window across the genome were calculated and mapped 
based on the physical locations of the top SNP hits. 
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Figure 9. Genome-wide association analysis with HDMBOA-Glc identifies known biosynthetic genes 
and a previously unknown locus. (A) Natural variation in the abundance of (A) DIM2BOA-Glc and (B) 
HDMBOA-Glc was mapped by GWAS. Each SNP marker was plotted based on its physical location in the 
maize genome (x-axis) and level of association with HDMBOA-Glc abundance (y-axes). SNP markers 
perfectly associated with the phenotype (i.e. p = 0) were rounded down to 30 on the y-axes for graphical 
representation. SNP markers on adjacent chromosomes (labeled at the bottom) are shown in different 
colors. Only SNP markers with –log10(p) > 5 were plotted. Local linkage disequilibrium blocks around the 
most highly associated markers, calculated from the same SNP data set, are indicated by black bars at the 
bottoms of the plots, and known benzoxazinoid biosynthetic genes are highlighted in red. (C) Additive 
effect on HDMBOA-Glc abundance of the two loci on chromosome 1 and chromosome 9. Mean +/- s.e., 
different letters indicate significant differences, P < 0.05, ANOVA followed by Tukey’s HSD test. Numbers 
in bars indicate sample sizes (D) Effect of haplotypic segregation on the expression of the candidate gene. 
Mean +/- s.e., **P < 0.005, two-tailed t-test. Numbers in bars indicate sample sizes. (E) Comparison of 
HDMBOA-Glc abundance in the 20 inbred lines with the highest and lowest GRMZM2G108309 gene 
expression levels. Mean +/- s.e., *P < 0.05, two-tailed t-test. 
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Figure 10. Phenylpropanoid-containing mass features co-elute with common daughter ions. (A) Mass 
spectrum scans of three mass features co-eluting with phenylpropanoid-like UV absorbance peaks are 
shown. The parental ions and the two shared daughter ions are labeled with their exact m/z measurement. 
(B) The predominant peaks at each specific m/z range eluting at different retention times likely represent
different structural isomers of the same compound in inbred lines B73 and CML247. (C) Structures of
ester conjugates of coumaric acid, caffeic acid, and ferulic acid, with 2-hydroxycitric acid.
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Figure 11. Three pairs of hydroxycitric acid conjugates have complementary distribution and 
common regulation of abundance in the maize diversity panel. (A) Dendrogram of the 282 maize 
inbred lines included in the GWAS panel constructed with the distance matrix calculated from 66,000 
SNP markers. The estimated concentration of three pairs of phenylpropanoid-containing structural 
isomers are shown in a color scale (blue = low abundance, yellow = high abundance, white = no sample 
measured) for each maize inbred line. Each monophyletic group was assigned to a genetic subpopulation 
as defined in Flint-Garcia et al., (2005) based on the predominant group assignment for the individuals 
within that clade. (B) The pairs of mass features shown in panel A have different retention times in 
minutes and were detected in negative ionization mode (m/z). (C) GWAS identified a common locus on 
chromosome 4 that regulates the abundance of all of the identified mass features from panel A. Only the 
results from the more polar isomers with structural confirmations are shown. (D) SNP markers most 
strongly associated with the phenylpropanoid hydroxycitric acid esters plotted based on their physical 
location in the maize genome (x-axis) and level of association with the metabolites (y-axis), and overlaid 
on the predicted transcripts of GRMZM2G063909 located at the same locus. (E) Pairwise correlation 
coefficients between SNP markers around the candidate gene were calculated to demonstrate that the 
significantly associated SNP markers are not in linkage disequilibrium with any adjacent gene model. (F) 
GRMZM2G063909 expression in leaf tips and bases was obtained from Kremling et al. (2018) and 
compared between maize inbred lines accumulating the rare (N = 72) and common (N = 207) 
phenylpropanoid hydroxycitric acid ester isomers. No significant difference (N.S.) in expression was 
found in either tissue type (p > 0.05; Student’s t-test).



Figure 12. Different isomers of phenylpropanoid hydroxycitric acid esters co-segregate with 
genetic markers at QTL on Chromosome 4 across near isogenic lines. PCR-based genotyping of 
B73 x Ki11 (A) and B73 x CML247 (B) near-isogenic lines. Graphical representations of all (C) 
coumaroyl hydroxycitric acid, (D) caffeoyl hydroxycitric acid, and (E) feruloyl  hydroxycitric acid  
isomers found in near isogenic lines of different genotypes normalized by the total ion 
concentration of each sample and the total normalized peak area compared across genotypes and 
between each other by two-way ANOVA followed by Tukey HSD. Groups of different significance 
levels are indicated by different letters (p < 0.05). N = 14 (B73), 3 (Het), and 4 (CML247/Ki11). 
N.S. = not significant, N.D. = not detected, Het = heterozygote.
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